Genomic Complexity of Metastatic Disease
The Conundrum of Combinations

Razelle Kurzrock, MD
Murray Professor of Cancer Research
Senior Deputy Director for Clinical Science
Director, Center for Personalized Cancer Therapy and Clinical Trials Office
Chief, Division of Hematology/Oncology
No conflicts of interest
Advanced, Integrated Omics
Lessons Learned

→ Use combinations of matched drugs for metastatic or complex tumors

→ Treat newly diagnosed patients

→ Omics is a disruptive technology; retrofitting the reality unveiled into traditional paradigms is suboptimal

→ Transformative changes will require new models for clinical research and practice
Why are cancers difficult to treat?

Divide and Conquer

Agents work only in those with a sensitizing aberration

Braiteh….Kurzrock, MCT 2007

Munoz J, Swanton C, Kurzrock R, Molecular Profiling and the Reclassification of Cancer; Am Soc Clin Oncol Educ Book. 2013:

Sharma, Nat Rev Cancer 2010
Traditional drugs/trials give incremental benefits

<table>
<thead>
<tr>
<th>Drug</th>
<th>Tumor</th>
<th>Survival Gain</th>
<th>CR (single agent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemcitabine</td>
<td>pancreas</td>
<td>1.5 months</td>
<td>≈ 0%</td>
</tr>
<tr>
<td>bevacizumab</td>
<td>colon</td>
<td>2.2 months</td>
<td>≈ 0%</td>
</tr>
<tr>
<td>erlotinib</td>
<td>pancreas</td>
<td>11 days</td>
<td>≈ 0%</td>
</tr>
<tr>
<td>bevacizumab</td>
<td>NSCLC</td>
<td>2 months</td>
<td>≈ 0%</td>
</tr>
<tr>
<td>sorafenib</td>
<td>renal</td>
<td>2 months</td>
<td>≈ 0%</td>
</tr>
<tr>
<td>temozolamide</td>
<td>glioblastoma</td>
<td>2.5 months</td>
<td>≈ 0%</td>
</tr>
<tr>
<td>docetaxel</td>
<td>prostate</td>
<td>2.4 months</td>
<td>≈ 0%</td>
</tr>
<tr>
<td>cetuximab</td>
<td>colon</td>
<td>1.5 months</td>
<td>≈ 1-2%</td>
</tr>
</tbody>
</table>
Master Protocol

Profile-Related Evidence Determining Individualized Cancer Therapy

PREDICT

- Histology-Independent targeted approach
- Multiple molecular aberrations assessed
- Patients matched with targeted agents
PIK3CA mutations were found in 10% of 1,000 patients with advanced cancers

- Endometrial cancers (29%)
- Breast cancers (24%)
- Colon cancers (17%)
- Ovarian cancers (14%)
- Lung cancer (13%)
- Head and neck squamous cell cancers (13%)
- Pancreatic cancers (13%)

Molecular aberrations do not segregate well by organ of origin.
Best RECIST Response.
Patients with 1 mutation

Matched therapy
N=175
Complete/Partial Response = 27%

Therapy without matching
N=116
Complete/Partial Response = 5%
p<.0001

Failure free survival (FFS2) improves with Phase I matched therapy but not unmatched compared to prior conventional therapy FFS1.
Genomic Technology: Breathtaking Progress

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time taken (start to finish)</td>
<td>13 years</td>
<td>4 years</td>
<td>4.5 months</td>
<td>~10 days</td>
</tr>
<tr>
<td>Number of scientists listed as authors</td>
<td>> 2,800</td>
<td>31</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Cost of sequencing (start to finish)</td>
<td>$2.7 billion</td>
<td>$100 million</td>
<td>< $1.5 million</td>
<td>~$5000</td>
</tr>
<tr>
<td>Coverage</td>
<td>8-10 ×</td>
<td>7.5 ×</td>
<td>7.4 ×</td>
<td>30-50X</td>
</tr>
<tr>
<td>Number of institutes involved</td>
<td>16</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Number of countries involved</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

QUICKER, SMALLER, CHEAPER

![Graph showing the decrease in cost per human genome over time](image-url)

- **Venter**
- **Watson**
- **African, Asian, Cancer pair**
- **169 in Genbank**
- **Individual Genome Sequencing**
Malignant Snowflakes
Metastatic Cancer

Wheler J……Kurzrock R. Oncotarget, 2014
<table>
<thead>
<tr>
<th>Pt number</th>
<th>Molecular Results (Foundation Medicine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PIK3CA amplification, SOX2 amplification, TP53 G302fs42, FLT3 L260</td>
</tr>
<tr>
<td>2</td>
<td>AKT1 (E17K)</td>
</tr>
<tr>
<td>4</td>
<td>EGFR amplification, CCND1 amplification, CDKN2A/B loss, FGFR1 amplification, MYC amplification, TP53 P151A</td>
</tr>
<tr>
<td>42</td>
<td>ERBB2 amplification, PIK3CA H1047L, AURKA amplification, TP53 R342P, CREBBP P858S, ZNF217 amplification</td>
</tr>
<tr>
<td>25</td>
<td>ERBB2 amplification, MYC amplification, CDK6 amplification, TP53 R213*</td>
</tr>
<tr>
<td>7</td>
<td>ESR1 Y537S</td>
</tr>
<tr>
<td>13</td>
<td>GATA3 445fs2+</td>
</tr>
<tr>
<td>16</td>
<td>RET C634R, GATA3 P436fs*11+</td>
</tr>
<tr>
<td>18</td>
<td>AKT3 amplification, MYC amplification, MYCL1 amplification, TP53 R248Q</td>
</tr>
<tr>
<td>54</td>
<td>NF1 R1276Q</td>
</tr>
</tbody>
</table>
Tip of the Iceberg

Genomics
Transcriptome
Proteomics
Epigenetic changes
Hereditary Predispositions

Host and Toxicity/Response/Immunity/Microenvironments
Transforming Outcomes in Solid Tumors?
Is It About Time?
Lessons from the Chronic Myelogenous Leukemia (CML) Story
A Fatal Disease Transformed

- Median survival in 1980s was about 4 years
- Median survival in 2012 is 20+ years
Figure 1. Tumor Response on Positron-Emission Tomographic (PET) Scanning.
Whole-body projections from 18F-fluorodeoxyglucose (FDG)–PET scans are shown. Panel A shows the pretreatment scan; Panel B, the repeat scan after 2 months of therapy with the hedgehog pathway inhibitor GDC-0449; and Panel C, the repeat scan after 3 months of therapy.
Response Rate of Chronic Myelogenous Leukemia Rises Rapidly in Newly Diagnosed Disease
Metastases = Blast Crisis in Leukemia
Key factors leading to the revolution in outcome of chronic myelogenous disease

- Key factors:
 - Known driver target (Bcr-Abl)
 - Targeted agent (imatinib)
 - Treat newly-diagnosed patients
Strategies

- Combinations for Advanced Disease
- Treat Newly Diagnosed Disease
Evolution of Clinical Trial Design
Redesigning Cancer Trials: Stage 1

Smaller Trials, Bigger Chance for Success

OLD MODEL: Large numbers of patients, not selected by molecular characteristics; lower chance of demonstrating effectiveness, since many participants do not have the molecular defects being targeted.

NEW MODEL: Small patient populations, all with the relevant mutations or genetic defects; greater chance of desired results, since all participants have the potential to respond.
Problems with stage 1 novel paradigms if majority of patients with metastatic cancer are unique

• Each patient needs specially tailored treatment regimen

• If there are 300 drugs in oncology, number of two drug combinations is ~45,000 number of three drug combinations ~4,455,100

• It will take over 1,000 years to figure this out
Redesigning Clinical Trials: Stage 2

• Drug-centric to patient-centric
• Testing a “strategy” not a drug
• The issue of combinations

The strategy is customized drug regimens based on molecular matching
Drug-Centric Trial (Traditional)

Strategy: Find common feature between patients (e.g. type of cancer or type of molecular aberration) and place all on same drugs.
Instead of using a consistent drug between patients even in the presence of different molecular profiles (old way), use a consistent strategy (molecular matching) but allow different drugs
Patient-Centric Trial (New)

Patient 1
Aberrant A, B, C

Drug A

Drug B

Drug C

Patient 2
Aberrant C, E, F

Drug C

Drug F

Drug E

Strategy: Molecular matching for each patient with customized therapy combination
Patient-Centric Therapy
We already customize treatment

Patient 1
Diabetes, CHF, RA

- metformin
- digitalis
- tofacitinib

Patient 2
Diabetes, Infection, Depression,

- metformin
- fluoxetine
- clarithromycin
- metformin
- flouxetine
Are combinations of drugs safe?

Patient R with breast cancer

• Alprazolam
• Arformoterol tartrate
• ASA
• CoQ10
• Folate / Vit B6 / Vit B12
• Levothyroxine
• Beclomethasone dipropionate
• Tiotropium bromide
• Bupropion
• Benzonatate
• Saliva substitutes topical
• Dextromethorphan and guaifenesin
• Ipratropium nasal
• Levalbuterol
• Spironolactone
• Fondaparinux
• ado-trastuzumab emtansine (TDM1)
Key Features of Next Generation Trials

- Use multiplex markers to diagnose/classify cancers
- Validate a strategy, not just a drug(s) or a marker(s)
- Patient centric
- Understand convergence pathways
- Use rule of thumb for safe combinations

Proof of principle trials in metastatic disease—then treat early
Cutting-Edge Trials
WINThER
Signature Trial of Worldwide Innovative Network for Personalized Cancer Therapy
6 centers, 5 countries
JC Soria (PI), R Kurzrock (co-PI)

Arm A
WINThER ARM A: Genomics

Arm B
WINThER ARM B: Transcriptomics
SPRING
Combinations to Improve Survival in Lung Cancer
Leadership Team: Kurzrock, Rodon, Lazar

Genomics Transcriptomics
Poor Prognosis

<table>
<thead>
<tr>
<th>Cases Diagnosed 2003-2006</th>
<th>Stage III</th>
<th>Stage IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014 National Cancer Database</td>
<td>2-yr Mortality</td>
<td>2-yr Mortality</td>
</tr>
<tr>
<td>Pancreas*</td>
<td>86.5%</td>
<td>93.3%</td>
</tr>
<tr>
<td>Liver</td>
<td>83.0%</td>
<td>93.3%</td>
</tr>
<tr>
<td>Intrahepatic bile duct</td>
<td>79.1%</td>
<td>92.8%</td>
</tr>
<tr>
<td>Esophagus</td>
<td>70.6%</td>
<td>90.3%</td>
</tr>
<tr>
<td>Bile duct (other)</td>
<td>70.5%</td>
<td>92.2%</td>
</tr>
<tr>
<td>Lung, Bronchus - NSCLC</td>
<td>65.3%</td>
<td>88.7%</td>
</tr>
<tr>
<td>Stomach</td>
<td>63.9%</td>
<td>90.0%</td>
</tr>
</tbody>
</table>

*UCSD-specific data; others are all NCDB cases
The Activation Traffic Jam

CLIA
IDE
PRMC/IRB
Drug Acquisition
Nothing will ever be attempted if all possible objections must first be overcome

Samuel Johnson
I-PREDICT
(Investigation of Profile-Related Evidence Determining Individualized Cancer Therapy)

FEASIBILITY STUDY IN NEWLY-DIAGNOSED MALIGNANCIES

J Sicklick and R Kurzrock

High risk: 30% chance of mortality in two years

Group 1 (N=75)
Newly Diagnosed
Borderline resectable disease
Unresectable disease
Medically unfit for surgical resection

Group 2 (N=75)
Newly Diagnosed
Metastatic disease

Group 3 (N=75)
≥ 1 Prior Treatment
Metastatic or Unresectable Disease

Foundation One NGS Genomics
THANK YOU
and
Questions??

rkurzrock@ucsd.edu
teoam2011@gmail.com