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SUMMARY
Precision oncology hasmade significant advances, mainly by targeting actionable mutations in cancer driver
genes. Aiming to expand treatment opportunities, recent studies have begun to explore the utility of tumor
transcriptome to guide patient treatment. Here, we introduce SELECT (synthetic lethality and rescue-medi-
ated precision oncology via the transcriptome), a precision oncology framework harnessing genetic interac-
tions to predict patient response to cancer therapy from the tumor transcriptome. SELECT is tested on a
broad collection of 35 published targeted and immunotherapy clinical trials from 10 different cancer types.
It is predictive of patients’ response in 80% of these clinical trials and in the recent multi-arm WINTHER trial.
The predictive signatures and the code aremade publicly available for academic use, laying a basis for future
prospective clinical studies.
INTRODUCTION

There have been significant advances in precision oncology,

with an increasing adoption of sequencing tests that identify

targetable mutations in cancer driver genes. Aiming to comple-

ment these efforts by considering genome-wide tumor alter-

ations at additional ‘‘-omics’’ layers, recent studies have begun

to explore the utilization of transcriptomics data to guide cancer

patients’ treatment (Beaubier et al., 2019; Hayashi et al., 2020;

Rodon et al., 2019; Tanioka et al., 2018; Vaske et al., 2019;

Wong et al., 2020). These studies have reported encouraging re-

sults, testifying to the potential of such approaches to comple-
ment mutation panels and increase the likelihood that patients

will benefit from genomics-guided precision treatments. How-

ever, current approaches for utilizing tumor transcriptomics

data to guide patient treatments are still of heuristic exploratory

nature, raising the need for developing and testing new system-

atic approaches.

Here, we present a precision oncology framework, SELECT

(synthetic lethality and rescue-mediated precision oncology via

the transcriptome), aimed at selecting the best drugs for a given

patient based on the tumor transcriptome. Unlike recent tran-

scriptome-based approaches that are focused on matching

drugs based on the expression of their targets (Beaubier et al.,
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2019; Rodon et al., 2019), our approach is based on identifying

and utilizing the broader scope of genetic interactions (GIs) of

drug targets, which provide biologically testable biomarkers for

therapy response prediction. We focus on two major types of

GIs that are highly relevant to predicting the response to cancer

therapies: (1) synthetic lethal (SL) interactions that describe the

relationship between two genes whose concomitant inactiva-

tion, but not their individual inactivation, reduces cell viability

(e.g., an SL interaction that is widely used in the clinic is

poly(ADP-ribose)polymerase [PARP] inhibitors on the back-

ground of disrupted DNA repair) (Lord and Ashworth, 2017);

and (2) synthetic rescue (SR) interactions that denote a type of

GIs wherein a change in the activity of one gene reduces the

cell’s fitness, but an alteration of another gene’s activity (termed

its SR partner) rescues cell viability (e.g., the rescue of Myc alter-

ations by BCL2 activation in lymphomas [Eischen et al., 2001]).

These SR interactions are of interest because when a gene is tar-

geted by a small-molecule inhibitor or an antibody, the tumor

may respond by up- or downregulating its rescuer gene(s),

conferring resistance to therapies.

To identify the SL and SR partners of cancer drugs, we

leverage on our two recently published computational pipelines

(Lee et al., 2018; Sahu et al., 2019) that identify genetic depen-

dencies that are supported by multiple layers of omics data,

including in vitro functional screens, patient tumor DNA and

RNA-sequencing (RNA-seq) data, and phylogenetic profile sim-

ilarity across multiple species. Applying these pipelines, we have

previously successfully identified aGq-drivermutation asmarker

for FAK inhibitor SL treatment in uveal melanoma (Feng et al.,

2019) and a synergistic SL combination for treating melanoma

and pancreatic tumors with asparaginase and mitogen-acti-

vated protein kinase (MAPK) inhibitors (Pathria et al., 2019).

We also identified SR interactions that mediate resistance to

checkpoint therapies in melanoma (Sahu et al., 2019). However,

the fundamental question of whether genetic dependencies in-

ferred from multi-omics tumor data can be used to determine

efficacious therapeutics for individual cancer patients has not

been addressed so far. Here, we present and study a computa-

tional framework, termed SELECT, to address this challenge.

The end result is a systematic approach for robustly predicting

patients’ response to targeted and immune therapies across

tens of different treatments and cancer types, offering an alter-

native way to complement existingmutation-based approaches.

RESULTS

Overview of the SELECT framework and the analysis
We collected cancer patient pre-treatment transcriptomics pro-

files together with therapy response information from numerous

publicly available databases, surveying Gene Expression

Omnibus (GEO), ArrayExpress, and the literature, and a new un-

published cohort of anti-PD1 treatment in lung adenocarcinoma.

Overall, we could find 48 such datasets that include both tran-

scriptomics and clinical response data of 3,925 cancer patients,

spanning 13 chemotherapy, 14 targeted therapy, and 21 immu-

notherapy datasets across 13 different cancer types. For the

datasets composed of multiple treatments or placebo arms,

we studied the patients receiving the specific therapy of
2 Cell 184, 1–16, April 29, 2021
interest. This test collection is at a scale surpassing all previous

efforts to predict patients’ response to anti-cancer treatments, at

least to our knowledge (Table S1; the transcriptomics profiles

and the treatment outcome information are publicly available

for the 23 of 48 datasets and those are made accessible; see

Data and code availability).

The SELECT framework consists of two basic steps: (A) For

each drug whose response we aim to predict, we first identify

the clinically relevant pan-cancer GIs (the interactions found to

be shared across many cancer types) of the drug’s target genes

(Law et al., 2014). (B) The identified GI partners of the drug

emerging from step A are then used to predict a given patient’s

response to a given treatment based on her/his tumor’s gene

expression (see Figures 1A and 1B and the STAR Methods for

a complete description of this process for both SL and SR inter-

actions, the latter of which was used to predict response to im-

mune checkpoint therapy). The prediction of response to tar-

geted and chemotherapy drugs is based on the SL partners of

the drug targets, while the prediction of response to checkpoint

therapy is based on the SR partners of these drugs’ targets.

Here, we provide a short overview of the SL and SR pipelines,

as follows:

(Section A in STAR Methods) Identifying SL interaction part-

ners of drug targets (Figure 1A). (A.1) Following a modified

version of ISLE (Lee et al., 2018), we begin by generating an initial

pool of SL drug target interactions for targeted therapy. For each

drug, we compile a list of initial candidate SL pairs of its targets

by analyzing cancer cell line dependencies with RNAi, CRISPR/

Cas9, or pharmacological inhibition (Aguirre et al., 2016; Barre-

tina et al., 2012; Basu et al., 2013; Cheung et al., 2011; Cowley

et al., 2014; Iorio et al., 2016; Marcotte et al., 2012, 2016; Tsher-

niak et al., 2017). Among these candidate SL pairs, we select

those that are more likely to be clinically relevant by analyzing

The Cancer Genome Atlas (TCGA) data, identifying pairs that

are significantly associated with better patient survival. Finally,

among the candidate pairs that remain after these two steps,

we select those pairs that are supported by a phylogenetic

profiling analysis (Lee et al., 2018). The top significant SL part-

ners that pass all these filters form the candidate pool of SL part-

ners of the specific drug in hand. However, this typically results in

hundreds of significant candidate GI partners for each drug, a

number that needs to be markedly reduced to obtain generaliz-

able and biologically meaningful biomarker stratification signa-

tures. (A.2) In the second step, SELECT generates a reduced

set of interaction partners tomake therapy response predictions,

by choosing the top 25 SL pairs found as the compact SL signa-

ture of each drug. This number of optimal SL set size is based on

a minimal amount of supervised learning performed analyzing

just one single targeted dataset, as described in detail in STAR

Methods. The following step describes how these SL pairs are

then used to predict the response of a given patient to targeted

therapies.

(Section B in STAR Methods) Predicting drug response in pa-

tients using the drug’s SL partners identified in step A (Figure 1B).

The SL partners of the drug identified in step A are then used to

predict a given patient’s response to a given treatment based on

her/his tumor’s gene expression. This is based on the notion that

a drug will be more effective against the tumor when its SL
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Figure 1. SELECT precision oncology framework

(A and B) The SELECT precision oncology framework is composed of two steps: (1) identifying SL interaction partners of drug targets and (2) predicting drug

response in patients using SL partners. (A) The SL partners (gene P) of the drug target genes (gene T) are supported by genetic dependencies in cell lines, patient

tumor data, and phylogenetic profiles. (B) The identified SL partners of the drug target genes are used to compute an SL-score to predict the response to the given

therapy. See also Figures S1, S2, and Table S2.
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partners are downregulated, because when the drug inhibits its

targets, more SL interactions will become jointly downregulated

and hence ‘‘activated.’’ To quantify the extent of such predicted

lethality, we assign an SL-score denoting the fraction of downre-

gulated SL partners of a drug in a given tumor (STAR Methods).

The larger the fraction of SL partners that are downregulated, the

higher the SL-score and themore likely the patient is predicted to

respond to the given therapy. Predictions of patient response to

checkpoint therapy are based on SR pairs of the drug targets,

which yield a stronger signal than their SL partners in this case.

The process to infer the SR pairs of drugs and then their SR-

scores in each patient is conceptually analogous to the process

described above for targeted therapies (focusing on the top 10

pairs). The SR-score of a drug in a given patient quantifies the

fraction of its downregulated SR partner genes based on the pa-

tient’s tumor transcriptomics and hence the likelihood of resis-

tance to the given therapy (STAR Methods). In defining re-

sponders versus non-responders, in all predictions made we
followed the criteria used in each of the clinical trials, as explicitly

listed in Table S1. In most cases, we take CR and PR as re-

sponders and SD and PD as non-responders, but there are

some exceptions in cohorts where the number of samples is un-

evenly distributed or the response was not evaluated based on

response evaluation criteria in solid tumors (RECIST) criteria,

as detailed in STAR Methods and Table S1.

We emphasize that the SL/SR partners were inferred only

once analyzing cancer cell line and TCGA data, and their set

size was optimized by training on only one single clinical trial da-

taset, prior to their application to a large collection of other test

clinical trial datasets (STAR Methods). In other words, the tran-

scriptomic profiles and treatment outcome data available in all

the independent test clinical trial cohorts were never used in

the SL and SR inference; hence, the latter serve as independent

test sets (Figure 1B). Importantly, throughout the study, we used

the same fixed sets of parameters in making the predictions

for targeted and immunotherapies. Taken together, these
Cell 184, 1–16, April 29, 2021 3
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Figure 2. SELECT stratifies melanoma patients for BRAF inhibitors based on the expression of BRAF SL partners

(A) SL-scores are significantly higher in responders (green) versus non-responders (red) based on Wilcoxon rank-sum test after multiple hypothesis correction.

For false discovery rates, * denotes 10% and ** denotes 5%.

(B) ROC curves depicting the prediction accuracy of the response to BRAF inhibition using SL-scores in the three melanoma cohorts (red, yellow, blue) and their

aggregation (green). The stars denote the point of the maximal F1-score.

(C) Bar graphs show the predictive accuracy in terms of area under the curve (AUC) of ROC curve (y axis) of SL-based predictors (red) and controls including

several known transcriptomics-deduced metrics (IFNg signature, proliferation index, cytolytic score, and the drug target expression levels) and several inter-

action-based scores (based on randomly chosen partners, randomly chosen PPI partners of the drug target gene[s], the identified SL partners of other cancer

drugs, and experimentally identified SL partners) in the three BRAF inhibitor cohorts (x axis).

(D) Bar graphs showing the fraction of responders in the patients with high SL-scores (top tertile; green) and low SL-scores (bottom tertile; purple). The gray line

denotes the overall response rate in each cohort, and the stars denote the hypergeometric significance of enrichment of responders in the high-SL group and

depletion of responders in the low-SL group (compared with their baseline frequency in the cohort).

(E and F) Kaplan-Meier curves depicting the survival of patients with low (yellow) versus high (blue) BRAF SL-scores (top versus bottom tertile of SL-scores) of (E)

GSE50509 (Rizos et al., 2014) and (F) independent (unseen) BRAF inhibitor clinical trials (Wongchenko et al., 2017). Patients with high SL-scores show better

prognosis, as expected. The log rank p value and median survival difference are denoted. See also Figures S2 and S3 and Tables S2 and S5.
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procedures markedly reduce the well-known risk of obtaining

overfitted predictors that would fail to predict on datasets other

than those on which they were originally built.

SELECT prediction of response to targeted cancer
therapies
We start by analyzing four melanoma cohorts treated with BRAF

inhibitors for which pre-treatment transcriptomics data and

response information are available (Hugo et al., 2015; Kakavand

et al., 2017; Rizos et al., 2014). Applying SELECT, we identified

the 25 most significant SL partners of BRAF (Table S2), where

the number 25 was determined from training on one single data-

set and kept fixed thereafter in all targeted therapy predictions

(see STARMethods for the details of parameter choices; Figures

S1 and S2). As expected, we find that responders have higher

SL-scores than non-responders in the three melanoma-BRAF

cohorts for which therapy response data are available (Fig-

ure 2A). Quantifying the predictive power via the use of the stan-

dard area under the receiver operating characteristics curve
4 Cell 184, 1–16, April 29, 2021
(area under the curve [AUC] of the ROC curve) measure, we

find AUCs greater than 0.7 in all three datasets and an aggregate

performance of AUC = 0.71 when the three cohorts are merged

(Figure 2B). As some datasets do not have a balanced number of

responders and non-responders, we additionally quantified the

resulting performance via precision-recall curves (often used

as supplement to the routinely used ROC curves; Figure S3A).

As evident from the latter, one can choose a single classification

threshold that successfully captures most true responders while

misclassifying less than half of the non-responders. Even though

all patients in these three cohorts have either a BRAF V600E or

V600K mutation, there is still a large variability in their response.

SELECT successfully captures some of this variability to predict

the patients who will respond better to BRAF inhibition.

Reassuringly, the SL-based prediction accuracy levels are

overall higher compared with those obtained by several pub-

lished transcriptomic-based predictors, including the prolifera-

tion index (Whitfield et al., 2006), interferon-g (IFNg) signature

(Ayers et al., 2017), cytolytic score (Rooney et al., 2015), or the
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expression of the drug target gene itself (BRAF in this case). SL-

based prediction accuracy levels are also better than other inter-

action-based scores, including the fraction of downregulated

randomly selected genes, the fraction of in vitro experimentally

determined SL partners (i.e., genes that pass the first step of Fig-

ure 1A), the fraction of the inferred SL partners of other drugs, or

the fraction of downregulated protein-protein interaction (PPI)

partners of drug targets (all of sizes similar to the SL set; empir-

ical p < 0.001) (Figure 2C). Although studies have reported that

V600E patients have a better response to vemurafenib than

V600K patients (Pires da Silva et al., 2019), this has not been

observed in the three melanoma cohorts that we analyzed,

where the BRAF 600E mutant patients are not significantly en-

riched in responders. The BRAF SL-score and the BRAF muta-

tion status are not significantly correlated, demonstrating that

SL-score is not a mere readout of BRAF oncogenic mutation

states (Figure S3B). The patients with high SL-score (defined

as those in the top tertile) show significantly higher rate of

response than the overall response rate, and the patients with

low SL-score (in the bottom tertile) show the opposite trend (Fig-

ure 2D). We observe that patients with higher SL-scores showed

significantly better treatment outcome in terms of progression-

free survival (PFS) in the dataset mentioned above where these

data were available to us (Figure 2E); the integrated analysis of

large-scale BRAF inhibitor clinical trials (Wongchenko et al.,

2017) (n = 621) also shows that the SL-score is associated with

significantly improved PFS (Figure 2F). As expected, the SL part-

ners of BRAFwere found to be enrichedwith the functional anno-

tation ‘‘regulation of GTPase-mediated signal transduction’’

(Fisher’s exact test, p < 0.002).

We next test the prediction accuracy of the SL-based

approach on a variety of targeted therapies and cancer types.

We collected 23 additional publicly available datasets from clin-

ical trials of cytotoxic agents and targeted cancer therapies,

each one containing both pre-treatment transcriptomics data

and therapy response information. This compendium includes

breast cancer patients treated with lapatinib (Guarneri et al.,

2015), tamoxifen (Desmedt et al., 2009), or gemcitabine (Julka

et al., 2008); colorectal cancer patients treated with irinotecan

(Graudens et al., 2006); multiple myeloma patients treated with

bortezomib (Terragna et al., 2016) or dexamethasone (Manoj-

lovic et al., 2017); acute myeloid leukemia patients treated with

gemtuzumab (Bolouri et al., 2018); and hepatocellular carcinoma

patients treated with sorafenib (Pinyol et al., 2019). In each data-

set, we first identified the SL interaction partners of the targets of

the drug given in that trial (STAR Methods; Table S2), and based

on those, we computed the SL-score of each sample from its

transcriptomics.

We first note that SELECT mostly fails in predicting the

response to cytotoxic agents, obtaining AUC > 0.7 in only 2 of

11 of these datasets where RECIST information was available.

This is not surprising given that the SL approach relies on the

specificity and correct identification of the targets of each

drug, and cytotoxic agents typically have a multitude of targets

that are often poorly defined. This is in difference from the

more recently developed targeted and immune checkpoint ther-

apies that have better-defined targets. Indeed, we find that

higher SL-scores are associated with better response in 4 of 7
targeted therapy datasets we could test. The results for the ther-

apies that are successfully predicted (all AUCs > 0.7) are pre-

sented in Figures 3A and 3B, and the pertaining precision-recall

curves are shown in Figure S3C. The predictive performance of a

variety of expression-based control predictors is random (Fig-

ure 3C). Patients with high SL-scores (within top tertile) have

significantly higher response rates than the overall response

rates, and the patients with low SL-scores (within bottom tertile)

show the opposite trend (Figure S3D). Importantly, in the four da-

tasets where we have survival information, we observe that pa-

tients with higher SL-scores also have improved overall survival

(Figures 3D–3G).

SELECT prediction of response to immune checkpoint
blockade
We next turn to study the ability of SELECT to predict clinical

response to immune checkpoint blockade. To identify the SR

interaction partners that are predictive of the response to anti-

PD1/PDL1 and anti-CTLA4 therapy, we introduced a few modi-

fications in the published pipelines (Lee et al., 2018; Sahu

et al., 2019), considering the characteristics of immune check-

point therapy (STAR Methods). For anti-PD1/PDL1 therapy,

where the antibody blocks the physical interaction between

PD1 and PDL1, we considered the interaction term (i.e., the

product of PD1 and PDL1 gene expression values) in identifying

the SR partners of the treatment (STAR Methods). For anti-

CTLA4 therapy, where the precise mechanism of action involves

several ligand/receptor interactions (Wei et al., 2017), we

focused on the CTLA4 itself, using its protein expression levels

as they are likely to better reflect the activity than the mRNA

levels. Using this immune-tailored version of SELECT, we

analyzed the TCGA data to identify the SL and SR partners of

PD1/PDL1 and of CTLA4. We could not identify statistically sig-

nificant SL interaction partners of these checkpoint targets, but

did identify significant pan-cancer SR interactions. In the latter,

the inactivation of the target gene of a drug is compensated by

the downregulation of another gene (termed the partner rescuer

gene). Given an immune checkpoint drug and pre-treatment tu-

mor transcriptomics data from a patient, we quantify the fraction

f of SR partners that are downregulated in the tumor. We define

1-f as its SR-score, where tumors with higher SR-scores have

less ‘‘active’’ rescuers and are hence expected to respond better

to the therapy (STAR Methods).

To evaluate the accuracy of SR-based predictions, we

collected a set of 21 immune checkpoint therapy datasets that

included both pre-treatment transcriptomics data and therapy

response information (either by RECIST or patient survival), over-

all comprised of 1,021 patients (Table S1). These datasets

include melanoma (Chen et al., 2016; Gide et al., 2018; Huang

et al., 2019; Liu et al., 2019; Nathanson et al., 2017; Prat et al.,

2017; Van Allen et al., 2015), non-small cell lung cancer (Cho

et al., 2020; Damotte et al., 2019; Hwang et al., 2020; Thompson

et al., 2020), renal cell carcinoma (Braun et al., 2020; Miao et al.,

2018), metastatic gastric cancer (Kim et al., 2018), and urothelial

carcinoma (Snyder et al., 2017) cohorts treated with anti-PD1/

PDL1, anti-CTLA4, or their combination. Indeed, we find that

overall higher SR-scores are associated with better response

to immune checkpoint blockade (Figure 4A), with AUCs > 0.7
Cell 184, 1–16, April 29, 2021 5
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Figure 3. SELECT stratifies patients for targeted therapies across different cancer types
(A) SL-scores are significantly higher in responders (green) versus non-responders (red) based on Wilcoxon rank-sum test after multiple hypothesis correction.

For false discovery rates, * denotes 10%, ** denotes 5%, and *** denotes 1%. Cancer types are noted on the top of each dataset.

(B) ROC curves for breast cancer patients treated with lapatinib (GSE66399) (Guarneri et al., 2015), tamoxifen (GSE16391) (Desmedt et al., 2009), or gemcitabine

(GSE8465) (Julka et al., 2008); colorectal cancer patients treated with irinotecan (GSE3964) (Graudens et al., 2006); multiple myeloma patients treated with

bortezomib (GSE68871) (Terragna et al., 2016); and hepatocellular carcinoma patients treatedwith sorafenib (GSE109211) (Pinyol et al., 2019). The circles denote

the point of maximal F1-score.

(C) Bar graphs show the predictive accuracy in terms of AUCs (y axis) of SL-based predictors and a variety of controls specified earlier in Figure 2C (x axis).

(D–G) Kaplan-Meier curves depicting the survival of patients with low versus high SL-scores of (D) multiple myeloma patients treated with dexamethasone

(Manojlovic et al., 2017) and (E) acute myeloid leukemia patients treated with gemtuzumab (Bolouri et al., 2018), (F) breast cancer patients treated with tamoxifen

(GSE16391) (Desmedt et al., 2009), and (G) breast cancer patientss treated with taxane-anthracycline (GSE32603) (Magbanua et al., 2015), where x axis denotes

survival time and y axis denotes the probability of survival. Patients with high SL-scores (top tertile, blue) show better prognosis than the patients with low SL-

scores (bottom tertile, yellow), as expected. The log rank p values and median survival differences (or 80th percentile survival differences if survival exceeds 50%

at the longest time point) are denoted in the figure. Tumor type abbreviations are as follows: MM, multiple myeloma; CRC, colorectal cancer; BRCA, breast

invasive carcinoma; AML, acute myeloid leukemia; and LIHC, liver hepatocellular carcinoma. See also Figure S3 and Tables S2 and S5.
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Figure 4. SELECT stratifies patients for immune checkpoint therapy across different cancer types

(A) SR-scores are significantly higher in responders (green) versus non-responders (red) based on Wilcoxon rank-sum test after multiple hypothesis correction.

For false discovery rates, * denotes 20%, ** denotes 10%, *** denotes 5%, and **** denotes 1%. Cancer types are noted on the top of each dataset. Results are

shown formelanoma (Chen et al., 2016; Gide et al., 2018; Liu et al., 2019; Nathanson et al., 2017; Prat et al., 2017; Van Allen et al., 2015), non-small cell lung cancer

(legend continued on next page)
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in 15 of 18 datasets where RECIST information is available (Fig-

ure 4B; for corresponding precision-recall curves, see Fig-

ure S3E). Notably, SELECT remains predictive whenmultiple da-

tasets of the same cancer types are combined for melanoma,

non-small cell lung cancer, or kidney cancer (Figure 4C).

The prediction accuracy of SELECT is overall superior to a va-

riety of expression-based controls (Figure 4D) including T cell

exhaustion markers (Wherry et al., 2007) and the estimated

CD8+ T cell abundance (Newman et al., 2015). Notably, SELECT

is also predictive for a new unpublished dataset of lung adeno-

carcinoma patients treated with pembrolizumab, an anti-PD1

checkpoint inhibitor, at Samsung Medical Center (SMC) (STAR

Methods; Figures 4A, 4B, and 4D [denoted as ‘‘new SMC data-

set’’]). As expected, patients with high SR-scores (in the top ter-

tile) are enriched with responders, while patients with low SR-

scores (in the bottom tertile) are enriched with non-responders

(Figure S3F). We also analyzed three recently published anti-

PD1 glioblastoma trials (Cloughesy et al., 2019; Schalper et al.,

2019; Zhao et al., 2019), where even though their overall efficacy

was moderate, the SR-score shows a considerable predictive

signal (Figures S3G and S3H). Finally, the SR-scores are also

predictive of progression-free or overall patient survival in four

different checkpoint inhibition cohorts where these data was

available (Figures 4E–4H).

ThepredictedSRpartners of PD1/PDL1andCTLA4 (Figure 5A)

are enriched for T cell apoptosis and response to inlerlueikn-15

(IL-15) pathways (Figure S3I). They include key immune genes

such as CD4, CD8A, and CD274, and PPI partners of PD1/

PDL1 and CTLA4 such as CD44, CD27, and TNFRSF13B. The

contribution of individual SR partners to the response prediction

is different across different datasets from different cancer types

(Figure 5B), where CD4, CD27, and CD8A play an important role

in many samples. Taken together, these results testify that the

SR partners of PD1/PDL1 and CTLA4 serve as effective bio-

markers for checkpoint response across a wide range of cancer

types.

To study whether tumor-specific SR-scores can explain the

variability observed in the objective response rates (ORRs) of

different tumor types to immune checkpoint therapy, we

computed the SR-scores for anti-PD1 therapy for each tumor

sample in the TCGA (STAR Methods). Comparing these scores

with the threshold SR-score for determining responders, we

computed the fraction of predicted responders to anti-PD1 ther-

apy in each cancer type in the TCGA cohort. We then compared

these predicted cancer-specific fractions with the actual ORR
(Cho et al., 2020; Damotte et al., 2019; Hwang et al., 2020; Thompson et al., 202

gastric cancer (Kim et al., 2018) treated with anti-PD1/PDL1, anti-CTLA4, or their

(GEO: GSE166449).

(B and C) ROC curves showing the prediction accuracy obtained with the SELEC

specific aggregation in melanoma, non-small cell lung cancer, and kidney cance

(D) Bar graphs show the predictive accuracy in terms of AUC (y axis) of SR-ba

predictors are similar to those described in Figure 2C, with the addition of T cell

(E–H) Kaplan-Meier curves depicting the survival of patients with low versus high

2018), (F) nivolumab/pembrolizumab-treated melanoma (Liu et al., 2019), (G) ate

treated melanoma (Riaz et al., 2017) cohorts. Patients with high SR-scores (blue

(yellow; below bottom tertile), and the log rank p values and median survival diffe

adenocarcinoma, SKCM, skin cutaneous melanoma; NSCLC, non-small cell lung

Table S4.
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observed in anti-PD1 clinical trials of 16 cancer types (Lee and

Ruppin, 2019; Yarchoan et al., 2017). Notably, we find that these

two measures significantly correlate (Figure 5C), demonstrating

that SR-scores are effective predictors of ORR to checkpoint

therapy across different cancer types.

Summing up over the three classes of the drugs that we stud-

ied, SELECT achieves greater than 0.7 AUC predictive perfor-

mance levels in 24 of 39 datasets containing RECIST response

information, spanning 2 of 11 non-targeted cytotoxic agents, 7

of 10 targeted therapies, and 15 of 18 immunotherapy cohorts

(including our new SMC dataset) (Figure 6). Adding the 7 (of 9)

additional datasets where SL/SR-score is predictive of progres-

sion-free or overall survival (1 chemotherapy, 3 targeted therapy,

and 3 immunotherapy), it is predictive in 31 of 48 cohorts overall

(65%) and in 28 of 35 (80%) cohorts among the targeted and

checkpoint therapies. Notably, these accuracies are markedly

better than those obtained using a range of control predictors.

A retrospective analysis of the WINTHER trial
To evaluate SELECT in a multi-arm basket clinical trial setting,

we performed a retrospective analysis of the recent WINTHER

trial data, the first large-scale basket prospective clinical trial

that has incorporated transcriptomics data for cancer therapy

in adult patients with advanced solid tumors (Rodon et al.,

2019). This multi-center study had two arms: one recommending

treatment based on actionable mutations in a panel of cancer

driver genes and the other based on the patients’ transcriptom-

ics data. We considered the gene expression data of 71 patients

with 50 different targeted treatments (single or combinations) for

which significant SL partners were identified. One patient had a

complete response, 7 had a partial response, and 11 were re-

ported to have stable disease (labeled as responders), while 52

had progressive disease (labeled as non-responders).

We first applied SELECT to identify the SL partners for each of

the drugs prescribed in the study (STAR Methods). The resulting

SL-scores of the therapies used in the trial are significantly higher

in responders than non-responders (Wilcoxon rank-sum p <

0.05; Figure 7A). Notably, the SL-scores of the drugs given to

each patient are predictive of the actual responses observed in

the trial (AUC = 0.72 [Figure 7B], with an SL-score of 0.44 chosen

as optimal threshold with maximal F1-score [Figures S4A and

S4B]). As shown in Figure 7C, the prediction accuracy of SL-

score is superior to that of control expression-based predictors.

This reassuring predictive signal led us to evaluate howmany pa-

tients are predicted to benefit from the set of drugs used in the
0), renal cell carcinoma (Braun et al., 2020; Miao et al., 2018), and metastatic

combination and our new lung adenocarcinoma cohort treated with anti-PD1

T framework (B) in the 15 different datasets and (C) across their cancer-type-

r. The circles denote the point of maximal F1-score.

sed predictors and controls across the 15 different cohorts (x axis) (control

exhaustion and CD8+ T cell abundance).

SR-scores in (E) anti-PD1/CTLA4 combination-treated melanoma (Gide et al.,

zolizumab-treated urothelial cancer (Snyder et al., 2017), and (H) nivolumab-

; over top tertile) show better prognosis than the patients with low SR-scores

rences are denoted. Tumor type abbreviations are as follows: STAD, stomach

cancer; and KIRC, kidney renal clear cell carcinoma. See also Figure S3 and
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B C

Figure 5. Meta-analysis of SELECT SR part-

ners for immune checkpoint therapy

(A) The SR partners of PD1-PDL1 interaction (left)

and CTLA4 (right), where red circles denote SR

partners, yellow circles denote checkpoint tar-

gets, purple circles denote genes that belong to

immune pathways, and cyan circles denote a

protein-protein interaction (based on STRING

database; Szklarczyk et al., 2015) with PD1/PDL1

or CTLA4, respectively.

(B) A heatmap showing the association of indi-

vidual SR partners’ gene expression (y axis) with

anti-PD1/PDL1 response in the 12 clinical trial

cohorts (x axis). The significant point-biserial cor-

relation coefficients are color coded (p < 0.1), and

the cancer types of each cohort are denoted on

the top of the heatmap.

(C) The SR-based predicted response rates for

different TCGA cancer types (y axis) correlate with

the objective response rates observed in inde-

pendent clinical trials across these cancer types

(x axis) (Spearman R = 0.45, p < 0.08), with a

regression line (blue). Tumor type abbreviations

are as follows: UCEC, uterine corpus endometrial

carcinoma; STAD, stomach adenocarcinoma,

SKCM, skin cutaneous melanoma; SARC, sar-

coma; PRAD, prostate adenocarcinoma; PAAD,

pancreatic adenocarcinoma; OV, ovarian serous

cystadenocarcinoma; NSCLC, non-small cell lung

cancer; LUAD, lung adenocarcinoma; LUSC, lung

squamous cell carcinoma; LIHC, liver hepatocel-

lular carcinoma; KIRC, kidney renal clear cell car-

cinoma; HNSC, head-neck squamous cell carci-

noma; GBM, glioblastoma multiforme; ESCA,

esophageal carcinoma; CESC, cervical squamous

cell carcinoma and endocervical adenocarci-

noma; BRCA, breast invasive carcinoma; and

BLCA, bladder carcinoma. See also Figure S3.
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trial, if the treatment choices would have been guided by

SELECT?

To answer this question in a systematic manner, we identified

the top predicted drugs in every patient individually by

computing the SL-scores of all cohort drugs based on the pa-

tients’ tumor transcriptomics (STAR Methods). For approxi-

mately 94% (67/71) of the patients, we could identify therapies

that have higher SL-scores than those of the drugs prescribed

to them in the WINTHER trial (Figure 7D). Based on the 0.44

optimal classification threshold identified as mentioned above,

we estimate that 65% (46/71) of the patients would respond to

the new treatments (with 10% false positive rate), compared

with 27% that responded (based on either targeted DNA

sequencing or transcriptomics) in the original trial. Of the 52

non-responders reported in the original trial, we find that 62%

(32/52) can be matched with predicted effective therapies (with

10% false positive rate) (Figure 7D; Figure S4C). We note that

while this analysis focuses on SL-based treatment recommen-

dations, obviously, other non-SL mechanisms may underlie pa-

tients’ response to different drugs.

Notably, Figure 7D clearly shows a trend where patients in the

WINTHER trial that were predicted to respond well to one of the

drugs used in the trial were often predicted to respond to quite a

few of these drugs. Following this observation, we considered
the mean value of the SL-scores across all the drugs that were

used in the WINTHER trial, which we term ‘‘mean SL-score’’ of

a given sample. This score represents the tendency of a tumor

to respond to any targeted therapy given in the cohort, a surro-

gate for its overall vulnerability. Notably, we find that SELECT

is more predictive in the patient cohorts where the mean SL-

score is high (computed over all the samples in a given cohort)

than in those where it is low (Figure S5). This analysis indicates

that SELECT works better in cohorts where the tumors are over-

all more vulnerable (as quantified by the mean SL-score). This is

quite notable as it suggests that SELECTmay actually offer more

targeted treatment opportunities in more advanced tumors (with

more genomic and transcriptional alterations).

To illustrate the potential future application of SELECT for pa-

tient stratification, we briefly describe here two individual cases

arising in the WINTHER data analysis. The first involves a 75-

year-old male patient with colon cancer who was treated with

cabozantinib because of p53 and APC mutations, and the pa-

tient indeed responded to the therapy. SELECT also recom-

mends the treatment of cabozantinib, bringing additional sup-

port to the treatment given (Figure 7E). The second example

involves a 78-year-old female patient with lung cancer who

was treated with nintedanib in the WINTHER trial because of

KIF5B-RET fusion, but failed to respond to the therapy. SELECT
Cell 184, 1–16, April 29, 2021 9



Figure 6. Overall prediction accuracy of SELECT precision oncology framework
The bar graphs show the overall predictive accuracy of SELECT for chemotherapy (red), targeted therapy (green), and immunotherapy (purple) in 24 different

cohorts encompassing 8 different cancer types and 9 treatment options (for which discrete response information such as RECIST was given). Tumor type

abbreviations are as follows: STAD, stomach adenocarcinoma; NSCLC, non-small cell lung cancer; MM,multiple myeloma; LIHC, liver hepatocellular carcinoma;

KIRC, kidney renal clear cell carcinoma; CRC, colorectal cancer; BRCA, breast invasive carcinoma; and BLCA, bladder carcinoma.
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assigns a low SL-score to nintedanib, but suggests an alterna-

tive treatment option, olaratumab, that obtains a much higher

SL-score (Figure 7F). Overall, the drugs most frequently recom-

mended by SELECT in this cohort are estramustine for their

MAP1A/MAP2 inhibition followed by proteasome inhibitor (bor-

tezomib) and MEK inhibitor (cobimetinib) (Figure 7G).

We further performed an SL-based drug coverage analysis in

another independent transcriptomics-based trials dataset, from

the TEMPUS cohort (Beaubier et al., 2019), focusing on the same

cancer types and drugs as those studied in the WINTHER trial,

shows a similar pattern of top recommended drugs (Figure 7H),

pointing to the robustness of these predictions across a variety

of patient cohorts. One of the top-predicted drugs in both co-

horts is the MEK inhibitor cobimetinib (>6% coverage in both co-

horts), which is recommended for melanoma and lung cancer

patients and is now being clinically tested across different can-

cer types (Grimaldi et al., 2017). In addition to the WINTHER

and TEMPUS cohorts, we analyzed the recently released

POG570 cohort, where the post-treatment transcriptomics

data together with treatment history are available for advanced

or metastatic tumors of 570 patients (Pleasance et al., 2020).

We first confirmed that SL-scores are associated with longer

treatment duration, which served as a proxy for therapeutic

response in the original publication (Figure S6A). We further

confirmed that this trend holds true per individual cancer types

(Figure S6B) and across individual drugs (Figure S6C).

Finally, we asked whether SELECT can successfully estimate

the ORRs observed across different drug treatments in different

clinical trials for a given cancer type. As these trials did measure

and report the patients’ tumor transcriptomics, we estimated the

coverage of each drug (the patients who are predicted to

respond based on their SL-scores being larger than the 0.44
10 Cell 184, 1–16, April 29, 2021
response threshold) in the TCGA cohort of the relevant cancer

type (STARMethods). We collected ORR data frommultiple clin-

ical trials in melanoma and non-small cell lung cancer (a total of

3,246 patients from 18 trials) (Table S3). Reassuringly, we find

that the resulting estimated coverage is significantly correlated

with the observed ORR in each of these cancer types (Figure S7).

DISCUSSION

We have demonstrated that bymining large-scale ‘‘-omics’’ data

from patients’ tumors, one can computationally infer putative

pairs of GIs that can be used as predictive biomarkers for a va-

riety of targeted and immunotherapy treatments, across multiple

cancer types. The resulting prediction accuracy is considerable

for many of the drugs tested. Furthermore, as shown in the anal-

ysis of the WINTHER trial, its application offers a promising way

to increase the number of patients that could benefit from preci-

sion-based treatments, which should be further explored in pro-

spective studies.

SELECT is fundamentally different from previous efforts for

therapy response prediction in two important ways: (1) The SL/

SR interactions underlying the prediction are inferred from

analyzing pre-treatment data from the TCGA ensemble; they

are further filtered using very limited training on a single treat-

ment response dataset to set up a small number of classification

hyper-parameters. This approach results in predictors that are

likely to be less prone to the risk of overfitting, which frequently

accompanies contemporary supervised predictors that are con-

structed by training on the relatively small clinical datasets.

Furthermore, the SL/SR interactions used in this study are

shared across many different cancer types, making them less

context sensitive and more likely to be predictive in different
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Figure 7. SELECT analysis of the WINTHER trial

(A) Responders (CR, PR, and SD; red) show significantly higher SL-scores compared with non-responders (PD; green) (Wilcoxon rank-sum p < 0.05).

(B) SL-scores are predictive of response to the different treatments prescribed at the trial (AUC of ROC = 0.72). The black circle denotes the point of maximal F1-

score (corresponding to an SL-score threshold of 0.44).

(C) Bar graphs show the predictive accuracy in terms of AUC (x axis) of SL-based predictors and different controls (y axis) (control types are similar to those

described in Figure 2C).

(D) (Top) Comparison of the SL-scores (y axis) of the treatments actually prescribed in theWINTHER trial (blue) and the SL-scores of the best therapy identified by

our approach (red) across all 71 patients; samples are ordered by the difference in the two SL-scores. (Bottom) A more detailed display of the SL-scores of the

treatment given in the trial (bottom row) and of all candidate therapies (all other rows), for all 71 patients (the treatments considered are denoted in every column).

Blue boxes denote the highest SL-scoring treatments predicted for each patient. Cancer types of each sample are color coded at the bottom of the figure.

(legend continued on next page)
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cancer types. (2) Notably, the interactions enabling the predic-

tions have clear biological meanings, as the functional interpre-

tation of the arising SL/SR interactions and their scoring are sim-

ple and intuitive, differing from the typical ‘‘black-box’’ solutions

characteristic of machine learning approaches.

The predictive performance of SELECT is superior to existing

predictors. As far as we are aware, no single model has previ-

ously been shown to obtain such predictive accuracies across

so many targeted and immunotherapy datasets. Reassuringly,

while many of the currently available immune checkpoint co-

horts are small, SELECT maintains its prediction accuracy

when multiple cohorts are merged. The aggregate AUCs for

melanoma, non-small cell lung cancer, and renal cell carcinoma

(where multiple cohorts are available) are also greater than 0.7.

This suggests SL/SR-scores in multiple datasets in a given

cancer type have a similar distribution (see Figure 4A compared

with Figure 3A), enabling the use of a single uniform threshold,

testifying to its generalizability. In computing the SL/SR-score,

we considered the fraction of ‘‘down’’regulated partners rather

than ‘‘up’’regulated partners. This is because it is less noisy to

determine cases where a gene is under-expressed than over-

expressed, since overexpression could result from a number

of different factors, including the expression arising from a

multitude of different cell types that are present in the tumor

microenvironment.

SELECT opens a possibility for future prospective clinical

studies based on tumor transcriptomics. For such prospective

clinical trials, we suggest that initially a more conservative

predictive threshold may be used, recommending treatments

only where the SL/SR predictions have a very strong and clear

support. Additionally, one should obviously be careful not to

use SELECT as evidence for precluding other promising treat-

ment options that may arise due to non-SL/SR tumor vulnera-

bilities. The SELECT stratification signatures of each drug are

focused on a small number of genes, suggesting that gene

expression panels could be designed and readily incorporated

in future trials in a cost-effective manner. Applying SELECT in

the clinic would require overcoming two logistic challenges:

(1) the need to obtain the genomics data and provide the anal-

ysis report in a timely manner and (2) the need to address

the noisy nature of the transcriptomics data, via careful

standardization and normalization. Reassuringly, most of the

transcriptomics data we analyzed in this study are from

formalin-fixed paraffin-embedded (FFPE) samples, which are

the ones most commonly used in clinical practice. Notably,

we are not relying on absolute expression values, but rather

on the genes’ relative ranking in the cohort, decreasing the

sensitivity of our approach to potential transcriptomic mea-

surement noise.

Importantly, we anticipate that the predictive performance of

SELECT could be further improved in the foreseeable future.

Such efforts will leverage on the increasing availability of accu-
(E and F) SELECT recommendations for two individual patients in the WINTHER

treatments. The drugs given in WINTHER trial are colored in blue, and the top pr

(G) A bar graph showing the frequency (x axis) of the drugs (y axis) predicted to

(H) The correlation between the estimated coverage of top-predicted drugs in th

types (n = 98). See also Figures S4, S5, S6, S7, and Table S5.
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mulating tumor proteomic data and the development of compu-

tational approaches for inferring GIs from single-cell sequencing

data or cell-type-specific expression levels derived from decon-

volving bulk RNA-seq data, which will clarify the contribution of

tumor heterogeneity and tumor microenvironment. Of note, the

latter will enable the identification of GIs that are grounded on

specific cell types (e.g., between tumor cells and CD8+ T cell in

their environment). As more data accumulate, we may learn

how to combine SL and SR interactions together to further boost

prediction performance.

In summary, this work introduces the first systematic tran-

scriptomics-based precision oncology framework: SELECT.

This framework prioritizes effective therapeutic options for can-

cer patients based on the biologically grounded concept of GIs,

which are validated on an unprecedented scale across many

different treatments and cancer types. Our study provides both

explicit stratification signatures and a computational pipeline,

freely available for academic use, which lay a basis for further

testing and improvement in future transcriptomics-based preci-

sion oncology clinical trials.

Limitations of study
Like other genome-wide computational prediction method,

SELECT has several limitations that should be acknowledged

and improved upon in the future. (1) The large-scale screens

and patient tumor data that are used for inferring the SL and

SR interactions are obviously noisy, both on the molecular

and on the phenotypic side. Given these data limitations, we

took a conservative approach that is focused on inferring com-

mon core of ‘‘pan-cancer’’ interactions that are shared across

different tumor types, while obviously there are important can-

cer-type-specific (and even sub-type) interactions that should

be inferred in the future, as more data accumulate. (2) SELECT

works by inferring the SL/SR interactions of the targets of the

drugs. To this end, it uses the currently best-established map-

pings of these targets, but those are noisy and imperfect, too

(and this may be one likely reason why SELECT performs

poorly on chemotherapy drugs). Furthermore, while the mech-

anism of action of most cancer drugs does involve the inhibition

of their targets, it is not the case for a few important cancer

drugs, precluding the use of SELECT for such drugs; one

such notable example is PARP inhibitors, whose mechanism

of action results in the binding the PARP protein to the DNA,

causing DNA-damage-induced cell death (furthermore, there

is no PARP clinical trial data available with transcriptomics on

which we could potentially test SL-based predictors, should

one be able to infer them). (3) Last, but possibly the most

important limitation that should be stated, is that while SELECT

has been retrospectively tested in a large collection of anti-can-

cer clinical trials, future prospective clinical trials are needed to

carefully assess and further improve its potential translational

benefits.
trial. The x axis denotes the SL-score, and the y axis lists the different cohort

ediction by SELECT is in red.

be most effective across the WINTHER cohort.

e WINTHER cohort (y axis) and in a TEMPUS cohort of corresponding cancer
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Bossé, D., Wankowicz, S.M., Cullen, D., et al. (2018). Genomic correlates of
response to immune checkpoint therapies in clear cell renal cell carcinoma.

Science 359, 801–806.

Mok, T.S., Wu, Y.-L., Thongprasert, S., Yang, C.-H., Chu, D.-T., Saijo, N., Sun-

paweravong, P., Han, B., Margono, B., Ichinose, Y., et al. (2009). Gefitinib or

carboplatin–paclitaxel in pulmonary adenocarcinoma. New England Journal

of Medicine 361, 947–957.

Monika Belickova, M., Merkerova, M.D., Votavova, H., Valka, J., Vesela, J.,

Pejsova, B., Hajkova, H., Klema, J., Cermak, J., and Jonasova, A. (2016).

Up-regulation of ribosomal genes is associated with a poor response to aza-

citidine in myelodysplasia and related neoplasms. Int. J. Hematol. 104,

566–573.

Nathanson, T., Ahuja, A., Rubinsteyn, A., Aksoy, B.A., Hellmann, M.D., Miao,

D., Van Allen, E., Merghoub, T., Wolchok, J.D., Snyder, A., and Hammer-

bacher, J. (2017). Somatic Mutations and Neoepitope Homology in Mela-

nomas Treated with CTLA-4 Blockade. Cancer Immunol. Res. 5, 84–91.

Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., Hoang,

C.D., Diehn, M., and Alizadeh, A.A. (2015). Robust enumeration of cell subsets

from tissue expression profiles. Nat. Methods 12, 453–457.

Novello, S., Scagliotti, G.V., Rosell, R., Socinski, M.A., Brahmer, J., Atkins, J.,

Pallares, C., Burgess, R., Tye, L., Selaru, et al. (2009). Phase II study of contin-

uous daily sunitinib dosing in patients with previously treated advanced non-

small cell lung cancer. British journal of cancer 101, 1543–1548.

Pathria, G., Lee, J.S., Hasnis, E., Tandoc, K., Scott, D.A., Verma, S., Feng, Y.,

Larue, L., Sahu, A.D., Topisirovic, I., et al. (2019). Translational reprogramming

marks adaptation to asparagine restriction in cancer. Nat. Cell Biol. 21,

1590–1603.

Pinyol, R., Montal, R., Bassaganyas, L., Sia, D., Takayama, T., Chau, G.Y.,

Mazzaferro, V., Roayaie, S., Lee, H.C., Kokudo, N., et al. (2019). Molecular pre-

dictors of prevention of recurrence in HCC with sorafenib as adjuvant treat-

ment and prognostic factors in the phase 3 STORM trial. Gut 68, 1065–1075.

Pires da Silva, I., Wang, K.Y.X., Wilmott, J.S., Holst, J., Carlino, M.S., Park,

J.J., Quek, C., Wongchenko, M., Yan, Y., Mann, G., et al. (2019). Distinct Mo-

lecular Profiles and Immunotherapy Treatment Outcomes of V600E and V600K

BRAF-Mutant Melanoma. Clin. Cancer Res. 25, 1272–1279.

Pleasance, E., Titmuss, E., Williamson, L., Kwan, H., Culibrk, L., Zhao, E.Y.,

Dixon, K., Fan, K., Bowlby, R., Jones, M.R., et al. (2020). Pan-cancer analysis

of advanced patient tumors reveals interactions between therapy and genomic

landscapes. Nat. Cancer 1, 452–468.
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TEMPUS xT Beaubier et al., 2019 https://search.vivli.org/doiLanding/studies/

00004321/isLanding

ll

Please cite this article in press as: Lee et al., Synthetic lethality-mediated precision oncology via the tumor transcriptome, Cell (2021), https://
doi.org/10.1016/j.cell.2021.03.030

Theory
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Eytan

Ruppin (eytan.ruppin@nih.gov).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The transcriptomics profiles and treatment outcome information of the 23 publicly available clinical trials where SELECT is predictive

and the custom code of our framework are available via ZENODO repository: https://zenodo.org/record/4661265. The data from the

many of the remaining trials cannot be shared due to restrictions in the data sharing agreement. The accession number for the new

SMC dataset (pembrolizumab-treated lung adenocarcinoma cohort) reported in this paper is GEO: GSE166449.

METHOD DETAILS

Data collection
We collected the cancer patients’ tumor transcriptomics data with therapy response information from public databases. Our search

was focused on GEO and ArrayExpress but also included a general literature search using different combinations of the following

search terms: ‘drug response, patient, cancer pre-treatment expression, transcriptomics, and therapy resistance’ performed by

March 2019 and with additional incoming datasets added as they became available to us thereafter (Braun et al., 2020; Cho

et al., 2020; Damotte et al., 2019; Liu et al., 2019; Roper et al., 2020; Thompson et al., 2020). We focused on those clinical trial cohorts

that have at least 5 responders and non-responders with sample size greater than 15. The collected cohorts include 13 chemo-

therapy, 14 targeted therapy (drugs of specific targets) and 21 immune checkpoint therapy cohorts covering a total of 13 cancer

types treated with 32 drugs. The immune checkpoint therapy cohorts include a new unpublished dataset of lung adenocarcinoma

patients treated with pembrolizumab at SamsungMedical Center. Among the entire collection of the 48 clinical trial cohorts, 23 data-

sets are accessible via ZENODO repository: https://zenodo.org/record/4661265.

The SELECT pipeline
Identifying SL/SR interaction partners of drug targets

Generating an initial pool of SL drug target interactions for targeted therapy. To identify clinically relevant SL interactions for targeted

therapies, we followed the three-step procedure described in (Lee et al., 2018). (1) We created an initial pool of SL pairs identified in

cell lines via RNAi/CRISPR-Cas9 (Aguirre et al., 2016; Cheung et al., 2011; Cowley et al., 2014; Marcotte et al., 2012; Marcotte et al.,

2016) or pharmacological screens (Barretina et al., 2012; Basu et al., 2013; Iorio et al., 2016). For drug target gene T and candidate SL

partner gene P, we checked whether the growth reduction induced by knocking out/down gene T or pharmacologically inhibiting

gene T is stronger when gene P is inactive via a Wilcoxon rank-sum test. (2) Second, among the candidate gene pairs from the first

step, we selected those gene pairs whose coinactivation is associated with better prognosis in patients, using a Cox proportional

hazard model, testifying that they may thus hamper tumor progression. Third, we prioritized the SL paired genes with similar phylo-

genetic profiles across different species. Because of the distinct distribution of p values for the first two screens as shown in Fig-

ure S2, we performed a false discovery correction with 1% for the in vitro screen (1st step) and 10% for the tumor screen (2nd

step). We were able to identify significant SL partners with these FDR thresholds for most of the datasets. However, for the cases

where we did not find any significant SL partners with this set of FDR thresholds, we relaxed the FDR thresholds in two step manner

to find themost significant set of SL partners; we first relaxed the FDR for the in vitro screen to 5%while keeping the FDR threshold for
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the tumor screening step at 10% (when analyzing GSE8465 and GSE3964). If this did not provide any significant pairs, we further

relaxed both FDRs to 20% (when analyzing GSE16391, GSE41994, GSE68871). If we did not identify any significant pairs even

with 20% FDR, we declared the corresponding drug as non-predictable by SELECT, as we could not reliably identify its candidate

SL partners.

Generating compact biomarker SL signatures for targeted therapy. The number of SL partners that pass FDR ranges from 50 to

1,000 depending on the drugs and specific FDR thresholds. Among such candidate SL partners that pass above FDR thresholds,

we further filtered these SL partners to generate a small set that is used to make the drug response predictions. This further filtering

has beenmotivated by the following three reasons: (1) Occam’s razor (regularization): predictor with a smaller number of variables are

likely to generalize better. (2) Biomarker interpretability: Small sets of partners are more relevant for clinical use as predictive bio-

markers. (3) Patient cohort comparative analysis: when comparing the SL-scores of different drugs to decide which would be the

best fit for a given patient, using the same number of top predictors facilitates such an analysis on equal grounds. To determine

the top significant SL partners, we performed a limited training on the BRAF inhibitor dataset (GSE50509) as shown in Figure S1A.

Following the training, the number of top significant set size was set to 25 where the SL partners were ranked with their patient sur-

vival significance in TCGA data.

Generating the initial pool of SR drug target interactions for immunotherapy. To identify GIs for immunotherapy, we introduced a

few modifications to our previously published GI inference pipelines (Lee et al., 2018; Sahu et al., 2019) to better capture the char-

acteristics of immune checkpoint therapy. (1) For anti-PD1/PDL1 therapy, where the antibody blocks the physical interaction be-

tween PD1 and PDL1, we considered the interaction term (i.e., the product of PD1 and PDL1 gene expression values) to identify

the SR partners of the treatment. For anti-CTLA4 therapy, where there the precise mechanism of action is less well characterized

and involves several ligand/receptor interactions (Wei et al., 2017), we focused on the protein expression levels of CTLA4 (available

via reverse phase protein lysate microarray (RPPA) values in TCGA data) as they are likely to better reflect the activity than the mRNA

levels. (We have used the median CTLA4 protein expression for the samples where CTLA4 RPPA data is not available.) For anti-PD1/

PDL1 therapy, we had to use gene expression rather than protein expression because protein expression of PD1 and PDL1 are not

available for many samples. (2) For the GI partner levels, we resorted to their gene expression and somatic copy number alterations

(SCNA) data as referenced in previous studies (Lee et al., 2018; Sahu et al., 2019) because protein expression wasmeasured only for

a small subset of genes. (3) Instead of considering all protein coding genes as candidates for SR partners, we focused on the genes

that are covered by the NanoString panel (Table S4) because (i) the gene expression of many of immune checkpoint therapy datasets

was quantified by NanoString platform and (ii) NanoString panel is enriched with immune system related genes that are highly rele-

vant to the response to immune checkpoint therapy. (4) We omitted the first step of the SL/SR inference procedure, which is aimed at

identifying candidate genetic interactions from the cell line functional screening data, because these interactions are not relevant to

immune checkpoint response. We could in principle use the genome-wide CRISPR screens in cancer cell/T cell co-culture, but this

data is limited to melanoma and the coverage is not fully genome-wide, where many genes included in the NanoString panel are

missing.We kept all the remaining steps of the published SL/SR inference procedures. (5) We focused on themediators of resistance

to immune checkpoint therapies using synthetic rescue (SR) interactions, as no statistically significant SL interaction partners were

identified via ISLE for either PD1/PDL1 or CTLA4.

Generating compact biomarker SR signatures for immunotherapy. To determine the top significant SR partners, we performed a

limited training on (Van Allen et al., 2015) as shown in Figure S1B. Following the training, the number of top significant set size was set

to 10 where the SR partners are ranked with their phylogenetic distances. These parameters were used in making all immune check-

point therapy response predictions. We analyzed TCGA data applying this pipeline to identify pan cancer SR interactions that are

more likely to be clinically relevant across many cancer types. In particular, we focused on the SR interactions where the inactivation

of the target gene is compensated by the downregulation of the partner rescuer gene, as the other types of SR interactions introduced

in (Sahu et al., 2019) were not predictive in the training dataset.

Predicting drug response in patients using SL/SR partners

We used the identified SL or SR partners for drug response prediction. We defined SL-score for chemotherapy and targeted therapy

as the fraction of inactive SL partners in a given sample out of all SL partners of that drug. The SL-score reflects the intuitive notion

that a targeted drug would be more effective when a larger fraction of its SL partners is inactive in the tumor. In each patient drug

response dataset, a gene is determined to be inactive if its expression is below bottom tertile across samples in the same dataset,

adhering to our previously published approaches (Lee et al., 2018; Sahu et al., 2019). We made this choice of normalization (i) to ac-

count for the basal expression level of each gene in specific tumor type and (ii) to minimize batch effects occurring when different

datasets are combined. We additionally multiplied the SL-score by a target gene factor to obtain the final SL-score. This has

been motivated by the notion that an inhibitor will not be effective when its target gene is not expressed; thus, we set the target

gene factor to be zero when the target gene is inactive (below bottom 30-percentile in the given sample), and we used mean expres-

sion of the targets genes when the given drug has more than one target gene. Drug target genes were primarily mapped based on

DrugBank (Law et al., 2014), and we referred other sources such as WINTHER trial and the literature with exception to the target

genes whose mechanism of action is explicitly denoted in DrugBank as an agonist. The drug-to-target mapping used in our analysis

can be found in Table S5.We used SR-score to predict response to immunotherapy, that quantifies the fraction f, SR partners that are

inactive, and we used 1-f as the SR-score to predict responders. Higher SL- or SR-score is predictive of response to therapies.
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Using the computed SL/SR-scores, we studied SELECT’s prediction accuracy in individual clinical trial cohorts. Overall, we used

the entire relevant cohorts for our analysis to test the accuracy. There are several exceptions to this when we focus on a subset of the

cohorts. For the cohorts that include both pre- and post-treatment biopsies, we naturally focused on pre-treatment biopsies

(GSE8465, GSE32603, GSE50509, GSE65185, GSE99898, GSE77750, GSE119262, and the immunotherapy cohort (Nathanson

et al., 2017)); for the cohorts composed of multiple treatments or placebo arms, we focused on the patients receiving the specific

targeted therapy of interest (GSE72970, GSE3264, TARGET AML, MMRF, GSE16391, and GSE66399). The pertaining detailed infor-

mation is available in Table S1 Column ‘Criteria for subsetting samples.’

To define the responders and non-responders, we aimed to faithfully use the criteria defined in the original clinical trials as much as

possible. For the datasets where the response information is available in the form of RECIST criteria, we solved a classification prob-

lem, quantifying the AUC of the pertaining ROC curve (rounded up to the second digit after the decimal point). For the cohorts where

RECIST information is available, we used CR, PR as responders and SD, PD as non-responders (GSE63885, GSE41998, GSE72970,

GSE3264 and the immunotherapy cohorts (Damotte et al., 2019; Gide et al., 2018; Hugo et al., 2017; Mariathasan et al., 2018; Miao

et al., 2018; Nathanson et al., 2017; Prat et al., 2017; Thompson et al., 2020; Van Allen et al., 2015), and New SMC dataset). For the

bortezomib cohort (GSE68871), we usedCR, nCR as responders and PR, SD, VGPR as non-responders. For the cohorts where path-

ological clinical response (pCR) information is available, we used pCR as responders, and no-pCR as non-responders (GSE22093,

GSE32603, GSE20194, GSE66399, and GSE4779). For the cohorts where response and non-response are defined by specific indi-

vidual clinical trial cohorts, we followed the definition of the original cohorts (GSE31811, GSE8465, GSE50509, and immunotherapy

cohorts (Chen et al., 2016; Cho et al., 2020; Huang et al., 2019; Kim et al., 2018)). For GSE77750, we used ‘treatment’ as responders

and ‘progressed’,’stable’ as non-responders. For the immunotherapy cohort of (Hwang et al., 2020), we have used ‘no recurrence’ as

responder and ‘recurrence’ as non-responder. For GSE119262, we have used a response metric based on Ki67, as used in the orig-

inal study. Formethotrexate (GSE10255), we have used themedianwhite blood cell (WBC) change to define response, aswas used in

the original investigation. For (Braun et al., 2020), we used CR, PR, SD as responders (n = 8) and PD as non-responders (n = 8), which

yields AUC = 0.77, since the number of CR/PR only was too small (n = 3); however, we confirmed that, even with taking CR/PR as

responders (n = 3) and SD/PD as non-responders (n = 13) like other cohorts, SELECT is still predictive (AUC = 0.81). For the cases

where progression-free survival time is available for all patients (with no censoring event), we used the median progression-free sur-

vival from the relevant literature as cutoff to distinguish the responders from non-responders and solved a classification problem. For

BRAF inhibitor cohorts, we have used 7-month progression-free survival as criteria for response following the literature (Sosman

et al., 2012). For GSE16391, we have used 75-percentile of the relapse-free survival ( = 50 months; 6 responders and 17 non-re-

sponders) as threshold for response that is comparable with the reported values in the literature (Lohrisch et al., 2006); in this cohort,

we also confirmed that the prediction accuracy is above 0.7 for a wide range of thresholds that separates responders versus non-

responders including 4.8 years (the exact value reported in the literature). For the datasets where we only had the overall or progres-

sion-free survival with censoring information, we performed a Kaplan-Meier analysis. It is known that the response based on RECIST

and patient survival does not necessarily correlate, andwe thus evaluated SELECT’s predictive performance in either term according

to the available data. The pertaining detailed information is available in Table S1 Columns ‘Criteria for R,’ and ‘Criteria for NR.’ The

mean SL-score is the mean value of the SL-scores across many different targeted therapies (the drugs that were used in the

WINTHER trial (see Experimental Procedures section ‘Retrospective analysis of the WINTHER trial’ below)), which is assigned to

each sample.

Samsung Medical Center anti-PD1-treated lung adenocarcinoma cohort
RNA was purified from formalin-fixed paraffin-embedded (FFPE) or fresh tumor samples using the AllPrep DNA/RNA Mini Kit

(QIAGEN, USA). The RNA concentration and purity were measured using the NanoDrop and Bioanalyzer (Agilent, USA). The library

was prepared following the manufacturer’s instructions using the RNA Access Library Prep Kit (Illumina, USA). Tumor response was

assessed by physicians using RECIST version 1.1 criteria. All 22 patients were treated with pembrolizumab, and all biopsy samples

were obtained prior to the treatment.

TCGA anti-PD1 coverage analysis for predicting the cancer type-specific response to checkpoint therapy
To predict the objective response rates of anti-PD1 therapy in each cancer type in TCGA, we computed the SR scores of PD1 in each

tumor sample based on each tumor’s transcriptomics. We chose the point of maximal F1-score as the response classification

threshold, computed across all anti-PD1/PDL1 datasets where the SR-score is predictive. Using this uniform threshold, we

computed the fraction of responders for each cancer type.We then compared these predicted fractions of responderswith the actual

response rates reported in 16 anti-PD1 clinical trials (Yarchoan et al., 2017) using a Spearman rank correlation.

Retrospective analysis of the WINTHER trial
(1) The data: The trial involved 10 different cancer types, mostly colon, lung and head and neck cancer. It had two arms, one recom-

mending treatment based on actionable mutations in a panel of cancer driver genes and the other based on the patients’ transcrip-

tomics data. We considered the Agilent microarray data of 71 patients with 50 different targeted treatments (single or combinations)

that were available to us. One patient had a complete response, 7 had a partial response and 11were reported to have stable disease

(labeled as responders in our analysis), while 52 had a progressive disease (labeled as non-responders). To balance the size of
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responders versus non-responders in this cohort, we defined CR/PR/SD as responders and PD as non-responders. (2) Inferring the

SL partners of the drugs given in the cohort: For each of the drug that was used in the trial, we first identified their target genes’ SL

partners using SELECT. (3) Estimating the ability of SELECT to predict the patients’ response to the drugs given: Based on the SL

signatures, we used SELECT to calculate the SL-score of each therapy and quantified the prediction accuracy of all therapies given

via a ROC analysis. We focused on the patients who received a single treatment (with less than two drug targets) since our subse-

quent analysis has focused onmonotherapies. We note that, as expected, as the number of targets of a drug increases, its prediction

accuracy decreases. (4) Charting the landscape of SL scores of all drugs across all patients: Lastly, to study the landscape of alter-

native treatment options recommended by SL-based approach, we considered all FDA-approved targeted therapies obtained from

the DrugBank database (Law et al., 2014) and the literature as potential treatment candidates. The drug-to-target mapping used in

our analysis can be found in Table S5. We then identified the SL partners of all the drugs’ target genes and computed their SL-scores

in each of the patient’s based on their transcriptomic data and ranked them accordingly. The exact same procedure was used in the

analysis of the TEMPUS cohort.

We additionally analyzed the post-treatment transcriptomics data together with treatment history from POG570 cohort (Pleasance

et al., 2020). We normalized the RNaseq data following the same procedure described above for WINTHER trial data, and calculated

SL-score for each sample using the treatments that the patients have received. We associated them with treatment duration,

following its utilization as a proxy for treatment response in the original publication. We also compared themedian treatment duration

of high versus low SL-score patients (adhering to the choice of SL-score of 0.44 as classification threshold) across all patient-treat-

ment pairs, and calculated the ratio between themedian treatment duration of high versus lowSL-score patients for each cancer type

and each treatment of sample size greater than 15 patients.

Coverage analysis on TCGA data for melanoma and non-small-cell lung cancer
We collected relevant objective response rates (ORRs) for various clinical trials in melanoma (8 drugs) and non-small cell lung cancer

(10 drugs) (Table S3) (Antonia et al., 2017; Brahmer et al., 2015; Daud et al., 2017; Decoster et al., 2010; Fruehauf, 2008; Han et al.,

2016; Katakami et al., 2013; Kiura et al., 2008; Larkin et al., 2015; Lohrisch et al., 2006; Mok et al., 2009; Novello et al., 2009; Reck et

al., 2016; Ribas et al., 2016; Sachdev et al., 2013; Shi et al., 2013; Wakelee et al., 2017). We excluded those clinical trials of combi-

nation therapies or of a small sample size (like those with a particular driver mutation). The number of patients participating in each

clinical trial and the trial details are provided in Table S3.

We performed a coverage analysis on 356 TCGA melanoma or 981 TCGA non-small cell lung cancer patients using SELECT and

predicted percentage of responders for each drug (using their drug targets). For predicting patient response, we used the threshold

for SL/SR-scores to determine responders (i.e., a patient is a responder if SL-score > 0.44 for chemotherapy or targeted therapy; and

SR-score R 0.9 for immunotherapy). Then across the drugs within a given cancer type, we computed the Spearman’s correlation

between the fraction of responders in the respective TCGA cohorts (coverage) and the ORRs from clinical trials.

QUANTIFICATION AND STATISTICAL ANALYSIS

The receiver operating characteristics (ROC) and precision-recall analyses were performed using R library ROCR. Wilcoxon rank-

sum test and Student’s t test were performed using R functions wilcox.test and t.test, respectively. Gene Ontology (GO) enrichment

analysis was performed using R library topGO. Statistical details of each clinical trial dataset can be found in Table S1. The Kaplan-

Meier analysis was performed, where the effect size was measured by the median survival differences (or 80-percentile survival dif-

ferences if survival exceeds 50% at the longest time point) and the corresponding significance was quantified by logrank test using R

libraries, survival and survminer. All boxplots follow the standard definition, where the box is drawn from top quartile (75th percentile)

to bottom quartile (25th percentile) of the data with a horizontal line drawn in the middle to denote the median value. The lowest point

of the bottom whisker is the minimum of the data and the highest point of the top whisker is the maximum of the data.

ADDITIONAL RESOURCES

The clinical trial data and the source code are accessible for academic purposes via ZENODO repository: https://zenodo.org/record/

4661265.
Cell 184, 1–16.e1–e5, April 29, 2021 e5

https://zenodo.org/record/4661265
https://zenodo.org/record/4661265


Supplemental figures

Figure S1. Determining the group size and ranking of the SL/SR partners of the SELECT framework, related to Figure 1

The top significant SL and SR partners used in the prediction of cytotoxic/targeted agents and immunotherapy were determined by varying the set sizes and

ranking scheme in GSE50509 (Rizos et al., 2014) (cytotoxic and targeted) and Van Allen cohort (Van Allen et al., 2015) (immunotherapy), which are the datasets we

initially started our analysis with, and determining the resulting prediction performance on these datasets. Based on this procedure, we selected 25 as the SL

partners set size and the patient survival p values as the ranking scheme used in the analysis of all other cytotoxic/targeted agents and 10 as set size of the SR

partners and phylogenetic score as the ranking scheme used for predicting the response for immune checkpoint immunotherapy.
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Figure S2. Distribution of the effect size and p values of the 25 identified BRAF SL partners across the three steps of the SELECT framework,

related to Figures 1 and 2

This figure provides the rationale for determining the false discovery rates for SL inference. (A) The results of the first step of the SL screens. The volcano plot

shows the point-biserial correlation coefficient (x axis) andWilcoxon rank-sum p values (y axis) of all protein coding genes from in vitroRNAi/CRISPR-Cas9 screen

and pharmacological inhibitions. For each candidate SL pair between the drug target (gene T; BRAF in this case) and the partner (gene P), we checked whether

the growth defect induced by gene knock-out/down or pharmacological inhibition of gene T is stronger when gene P is inactive either by mRNA expression or

somatic copy number alteration (SCNA). (B) The results of the second step of SL screen from TCGA tumor data. The volcano plot shows the Cox hazard ratio (x

axis) and corresponding Wald p values (y axis), where we checked whether co-inactivation of gene P and T leads to significantly enhanced patient survival in

TCGA data as described in (Lee et al., 2018). Note that the significance level is considerably lower for tumor screen compared to the in vitro screen. We thus used

more stringent FDR correction for in vitro screen (1%) than tumor screen (10%). (C) The results from phylogenetic screen showing the cumulative distribution of

(rank-normalized) phylogenetic distances between BRAF and all protein coding genes. The cutoff of 50-percentile was used following (Lee et al., 2018). The 25

identified BRAF SL partners are denoted in the figures.
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Figure S3. SELECT predicts response to cytotoxic agents, targeted therapy, and immunotherapy, related to Figures 3, 4, and 5

(A) Precision-recall curves depicting the prediction accuracy of the response to BRAF inhibitor using SL-scores in the threemelanoma cohorts. (B) BRAFmutation

status is not associated with SL-score. The SL-scores (y axis) of BRAF V600E mutated patients (red) versus BRAF V600K mutated patients (green) in three

(legend continued on next page)

ll
Theory



melanoma cohorts GSE50509, GSE65185, and GSE99898 (x axis). Wilcoxon p values are 0.16, 0.87, and 0.51, respectively. (C) Precision-recall curves of other

cytotoxic agents and targeted therapies. The AUC of each precision-recall curve is denoted in the figure legend, and the circles denote the point of maximal F1-

score. (D) Bar graphs showing the fraction of responders in the patients with high SL-scores (top tertile; green) and low SL-scores (bottom tertile; purple). The gray

line denotes the response rate in each cohort, and the stars denote the hypergeometric significance of enrichment of responders in the high-SL group and non-

responders in the low-SL group. (E) Precision-recall curves for the SR-scores across the 15 different datasets with AUCs > 0.7. The AUC of each precision-recall

curve is denoted in the figure legend, and the circles denote the point of maximal F1-score. (F) Bar graphs showing the fraction of responders in the patients with

high SR-scores (top tertile; green) and low SR-scores (bottom tertile; purple). The gray line denotes the response rate in each cohort, and the stars denote the

hypergeometric significance of enrichment of responders in the high-SR group and non-responders in the low-SR group. (G) Bar graphs show the predictive

accuracy in terms of AUC (y axis) of SR-based predictors and control predictors across the three glioma cohorts (x axis). (control predictors are similar to those

described in Figure 2C in the main text.) (H) Bar graphs showing the fraction of responders in the patients with high SR-scores (top tertile; green) and low SR-

scores (bottom tertile; purple) in the three glioma datasets. The gray line denotes the response rate in each cohort, and the stars denote the hypergeometric

significance of enrichment of responders in the high-SR group and non-responders in the low-SR group. (I) The bar graph of pathway enrichment analysis of 10

PD1-PDL1 and 10 CTLA4 SR partner genes in aggregate. x axis shows the -log10 (Fisher exact test p value) and y axis shows the enriched pathways.
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Figure S4. Predicting therapy response across different drugs and tumor types in WINTHER trial data, related to Figure 7

(A) The ROCplots show that the SL-scores aremost predictive of response to the different treatments prescribed at the trial (AUC of ROC= 0.72), markedly higher

than those of control predictors (as described in Figure 2C). (B) The parallel precision-recall, showing that the SL-score predictor outperforms an array of other

control predictors (AUPRC = 0.49). (C) The x axis shows the SL-score classification threshold and y axis depicts the false positive rate (derived from the ROC

curve presented in Figure 7B, (blue)), the overall coverage (the fraction of the patients in the WINTHER cohort for whom SELECT recommends higher SL-scoring

alternate treatment options than those they have actually received, red), and the fraction of the non-responders in WINTHER cohort for whom SELECT rec-

ommends such treatment options (orange). As the SL-score decision threshold increases, less and less patients are denoted ‘positive’ (i.e., are assigned a

treatment recommendation). At SL-score threshold of 0.44, SELECT recommends alternate treatments that are predicted to be effective for 65% of the entire

cohort and 62% of non-responders (as marked by the stars).
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Figure S5. SELECT prediction accuracy versus mean SL-score, related to Figure 7

SELECT’s prediction accuracy (AUCs) were compared between the cohorts where themean SL-score is high (green) versus low (red, separated bymedian values

of the mean SL-score). SELECT prediction accuracy is associated with the mean SL-score (A) for targeted therapy (Wilcoxon rank-sum p < 0.06) but (B) while a

similar trend is also observed for immunotherapy, it is not significant (Wilcoxon rank-sum p < 0.15).
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Figure S6. Predicting therapy response across different drugs and tumor types in POG570 trial data, related to Figure 7

(A) The SL-score is associated with treatment duration in the POG570 cohort (Wilcoxon rank-sum p < 0.023). (B-C) The fold change (FC) of median treatment

duration in high SL-score group (SL-score > 0.44) versus low SL-score group (SL-score% 0.44) for (B) each cancer type and (C) each drug, across all categories

with more than 15 patients.
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Figure S7. Coverage predicted by SL-score across different therapies in melanoma and lung cancer, related to Figure 7 and Table S3

SELECT is predictive of coverage (fraction of the patients predicted to be responsive to the given treatment based on the criteria, SL-score > 0.44 for targeted

therapies and SR-scoreR 0.9 for immunotherapies) across different therapies in (A) melanoma and (B) non-small cell lung cancer. Spearman rank correlation and

associated p values are noted in the figures.
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