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TherapeuTic advances in 
Medical Oncology

Introduction
Attrition rates are a critical issue in drug develop-
ment especially within oncology, having direct 
impact on clinical trial outcomes. Furthermore, 
each drug that successfully reaches the mar-
ket also has to bear the research and development 

costs of programs that failed, and the average cost 
of developing a new drug is $1 billion.1

There are now more than 50 commercially avail-
able oncology drugs targeting the molecular path-
ways frequently aberrant in human tumors,2 and 
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hundreds of new targeted drugs including modu-
lators of immune checkpoints are in clinical pipe-
lines. However, the clinical development of 
oncology drug products still faces several major 
challenges: (1) the attrition rate within the oncol-
ogy field as a whole is 82% for drugs that enter 
clinical development. For the subset of kinase 
inhibitors, the attrition rate is 53%1; (2) phase III 
failure rates are as follows: (i) 45% due to lack of 
efficacy, (ii) 24% due to failure to prolong life 
compared to existing therapies, and (iii) 31% due 
to other reasons including toxicities and failure to 
identify cancer populations likely to respond to 
treatment. Therefore, there is a critical need to 
decrease the attrition rate for molecularly targeted 
agents and immune therapies in oncology.1

Affordable technologies for tumor molecular pro-
filing to refine prognosis and inform treatment 
decisions3–7 are available, but a predictive bio-
marker for patient selection and to guide clinical 
design remains an unmet need. Indeed, the cur-
rent approach usually results in a high patient 
attrition rate because even when validated selec-
tion criteria are used, they are mostly based on 
DNA analysis, and the frequency of the potential 
drug targets is usually low in the population (3–
5%).8 As a consequence, most of the patients 
screened cannot be enrolled and only a minority 
end up being treated.

Expanding patient selection strategies beyond 
DNA and integration of transcriptomics is still 
infrequent. Two prognostic signatures, namely 
Oncotype and Mammaprint, are most commonly 
used today in clinical practice to inform potential 
benefit of adjuvant chemotherapies or hormono-
therapies for patients with early stage breast can-
cer, but not to select the specific therapies most 
likely to be beneficial.9–12 For all other solid tumor 
types, despite numerous reports of molecular sig-
natures developed to predict efficacy of specific 
treatments, there is no consensus on the use of 
molecular transcriptomic signatures in clinical 
oncology, and the reason is mostly related to dif-
ficulties in analytic interpretation (and reproduc-
ibility) of data, due to high interpatient 
variability.13,14

Integration of transcriptomics as a predictive bio-
marker to guide personalized therapies was tested 
in the WINTHER prospective clinical trial and 
demonstrated a significant increase (35%) in the 
fraction of patients who were candidates to receive 
targeted therapeutic options.15 This trial of WIN 

consortium remains today the only reported trial 
using transcriptomics prospectively to navigate 
personalized cancer treatments. The major differ-
ence with other transcriptomic approaches 
employed in the WINTHER trial was the control 
of interpatient variability of gene expression using 
dual tumor and normal organ-matched tissue 
biopsies from the same patients. The data 
obtained in this study also enabled development 
of a novel algorithm to predict the duration of 
progression-free survival (PFS) under specific 
treatments known as the Digital Display Precision 
Predictor (DDPP) algorithm.16

Building on these achievements, we present a new 
model for cancer drug development based on 
transcriptomics as well as genomics and a novel 
algorithm to improve matching of drugs with pre-
dictive biomarkers that, we believe, may over-
come the limitations of current clinical drug 
development methods.

Methods
Our in silico analyses were based on data from the 
European Union funded WINTHER trial.15

Patients with advanced cancer were enrolled pro-
spectively in this trial and underwent biopsy of 
tumor tissue and organ-matched normal tissue, 
which was then analyzed using next-generation 
sequencing and transcriptomics. Clinical out-
comes for 101 patients with advanced/metastatic 
solid tumors [38 colorectal cancers (CRC), 20 
head and neck (HN) carcinomas, 18 non-small-
cell lung cancers (NSCLC) and 25 were other 
cancers (including breast, bladder, esophagus, 
gastric and kidney, neuroendocrine tumors, rhab-
domyosarcoma, leiomiosarcomas, and hepatocar-
cinomas]) were available. The median age of 
patients was 59 years (range, 26–82 years); Sixty 
percent (n = 60) were men. Patients enrolled in 
the WINTHER study were heavily pretreated 
with a median of 3 previous treatments (range 
from 1 to 7). The distribution of Eastern 
Cooperative Oncology Group (ECOG) status 
was as follows: ECOG, 0–35%; ECOG, 1–51%; 
ECOG, 2–11%; and ECOG, >2–3%.

The dataset used in our in silico analysis consists 
of Agilent microarray data generated from tumor 
and analogous organ-matched normal lung tis-
sues from each patient.15 Biopsies were stored in 
RNALater, then embedded and frozen in OCT. 
Histology quality control ensured a minimum of 
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50% tumor cells in tumor biopsies, and a mini-
mum of 30% normal epithelial cells in bronchial 
mucosa biopsies (in the case of NSCLC for 
example).

C-MET inhibitors are currently approved for the 
treatment of NSCLC patients harboring MET 
exon 14 skipping and c-MET amplifications. 
Such indications based on DNA alterations have 
a prevalence of less than 5% in NSCLC patients.8 
We explored the hypothesis that integrating tran-
scriptomics by measuring the differential expres-
sion of MET and/or its ligand HGF in biopsies 
from the tumor tissue and analogous normal tis-
sue (histologically matched: e.g. normal bronchial 
mucosa obtained under bronchoscopy for 
NSCLC tissue) would potentially expand the 
clinical utility to a higher fraction of patients and 
extend the indications for c-MET inhibitor treat-
ment to other types of metastatic cancers.

While HGF is the ligand which activates MET 
upon binding to it, our analysis also considered 
the activation of c-MET independently of HGF. 
Thus, we performed in silico the following steps: 
(1) we explored the prognostic value of the 
c-MET target and of its ligand HGF using the 
Kaplan–Meier (KM) PFS probability plots and 
Forest plots of a cox regression hazard ratios 
(HRs); (2) we built a predictor of PFS under 
c-MET inhibitor treatment using the recently 
published DDPP algorithm16 to estimate the pre-
dicted PFS (pPFS) for all WINTHER study 
patients if they were treated with c-MET inhibi-
tor; and (3) we designed a clinical study that 
would efficiently demonstrate the efficacy of 
c-MET inhibitors in the selected population.

With the same methodology, we explored the 
prognostic and predictive value of key IO targets: 
PDL1, CTLA4, TIGIT, TIM3, LAG3, TLR4, 
and ICOS in patients with metastatic CRCs and 
NSCLC, and identified the targets with highest 
potential for clinical drug developments 
programs.

The patients were classified into high and low 
groups based on the expression (differential 
expression tumor versus normal or expression in 
tumor alone) of their genes of interest based on 
the k-mean clustering method.17 When using the 
differential expression tumor versus normal, the 
log2 of the ratio of the intensities was used. When 
using the expression in the tumoral tissue only, 
the log2 of the intensity was used. One patient 

was excluded from the analysis since the expres-
sion of MET of this patient was not available.

The survival of each of the expression level groups 
was estimated using the univariate KM plot. The 
difference between the survival curves of the 
groups was tested using the log-rank test. The 
median survival in months was estimated from the 
KM plots. A multivariate survival analysis was 
performed and visualized using the Forest Plot for 
Cox proportional hazard model. While various 
covariates were included in the analysis (sex, site/
type of cancer, ECOG, and expression level 
group), in each covariate one of the subgroups 
was used as a reference and the HR of all other 
subgroups within the specific covariate were esti-
mated against it. HR higher than 1 indicates that 
the subgroup is likely to prolong survival. HR 
lower than 1 indicates that the likelihood is to have 
a shorter survival. The range of the HR was esti-
mated with a 95% confidence interval (CI) and 
the level of significant was provided by p value. 
The survival analyses were computed in R using 
the ‘survival’ and ‘survminer’ packages.18–20

mRNA and RNA-seq validation datasets were 
analyzed using the KMplotter tool which is pub-
licly available and includes datasets from various 
sources such as Gene Expression Omnibus and 
The Cancer Genome Atlas.21 We used one cohort 
(breast cancer) from the gene-chip repository and 
two cohorts from the RNA-seq repository (pan-
creatic ductal adenocarcinoma and HN squa-
mous cell carcinoma). Since we generated KM 
which included more than one gene, we used the 
multiple genes feature in which we used the mean 
expression of the selected genes while each gene 
had an equal weight. Since there is no option to 
set a cutoff similarly to ours (k-mean clustering), 
we used the automatic-selected best cutoff fea-
ture which test all the possible thresholds between 
the lower and upper quartiles to classify the group 
into high and low, and used the best performing 
threshold as a cutoff. The cohorts used were not 
filtered by any characteristics (clinical or cellular). 
For the mRNA cohort, all probes of the MET 
and HGF genes were selected.

Generating a predictor using the DDPP algorithm: 
The predictor for c-MET inhibitor treatment effi-
cacy was built based on the DDPP algorithm.16 
The algorithm uses a list of genes (selected based 
on previous knowledge) and correlates (using 
Pearson) each one of them alone against the sur-
vival values. The genes are then ranked (based on 
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R and p values) and different combinations of the 
genes are tested by correlating the expression 
value of all the genes in a given combination 
against the survival values. The most correlated 
and significant combination is then selected and 
the equation of the linear regression is then used 
as a predictor (the equation links expression to 
survival values).

The key steps of the DDPP model are as follows: 
identification and ranking of key genes based on 
their differential expression in tumor compared to 
analogous normal tissue from the same patient 
and their Pearson correlation with PFS. In the 
example of c-MET inhibitors, the genes used to 
build the predictor were selected based on previ-
ous knowledge from the literature22–25: MET, 
HGF, HGFAC, ETS1, ETS2, TFAP2A, TCF7L2, 
SP1, TGFA, TGFB1, IL1A, IL1B, IL6, ST14, 
GRB2, SHC1, CRK, CRKL, PIK3CA, PLCG1, 
SRC, PTPN11, STAT3, GAB1, PTPRJ, PTPRF, 
PTPN1, PTPN2, ITGA6, ITGB4, CD44, EZR, 
RDX, MSN, SOS1, SOS2, KRAS, NRAS, 
HRAS, TIAM1, CTTN, DNM2, ICAM1, RAF, 
MAPK8, EGFR, EGF, ERBB2, ERBB3, MST1R, 
PDGFRA, PDGFRB, AXL, HIF1A, PTK2, 
ADAM17, CBL, ADAM10, PSENEN, SPSB3, 
PLXNB1, PIK3R1, SPSB1, SPSB2, INPP5D, 
INPPL1, RANBP9, RANBP10, LECT2, 
HSP90AA1, HSP90AB1, and AKT1. In the sec-
ond step, the DDPP algorithm performs para-
metric-free feature summation selecting the 
optimal number of genes, and deriving a score 
based on the relative gene expression of the 
selected genes. The final DDPP regression equa-
tions link gene expression to clinical outcome. 
The regression equations are then used to esti-
mate pPFS.

Selecting linear regression correlator using step-in 
analysis: The c-MET genes (mentioned above) of 
the three patients treated with c-MET inhibitors 
in the WINTHER trial were correlated (Pearson 
correlation) with their associated PFS values. The 
correlations were ranked based on their signifi-
cance according to the DDPP methodology 
(ranked by p value and R). All possible combina-
tions of gene sets, starting from a single gene 
(with highest correlation) and adding one more 
gene (the next most correlated gene) in each step 
were correlated with the PFS. A weighted expres-
sion value of the genes composed in each set was 
calculated using the mean, median, sum, fold, 
and absolute of the fold change values of the 
genes. Figure 2(b) shows the most significant 

gene set (based on p value and R) selected as the 
correlator: Y = 2.7852X − 5.97 where Y is the 
median of fold changes tumor versus normal mul-
tiplied by the intensity of expression in the tumor 
for each of the six genes: EZR, GRB2, SPSB3, 
CRKL, IL1B, and PSENEN, and X is PFS in 
months. The predictor performance was R = 1 
and p = 0.0037. The reciprocal equation 
X = (Y + 5.97)/2.7852 was then used to deter-
mine the pPFS for all other patients of WINTHER 
study, if they would have received a c-MET 
inhibitor.

To define the main criteria for eligibility, we 
observed at the fold change tumor versus normal 
values. Patients who had fold change values 
higher than 1.5 for MET and/or HGF were con-
sidered to be eligible. Patients classified as low in 
both genes would not be matched to the potential 
study. On the other hand, patients classified as 
high will potentially have a benefit from the study.

Results

Prognostic value of c-MET target
We explored the differential gene expression lev-
els of MET and HGF in the tumor and in the 
analogous normal tissues for NSCLC, CRC, HN, 
and other types of advanced solid tumors in 
patients from the WINTHER trial, while each 
patient being used as his/her own control. The 
KM survival analysis was used to visualize the 
impact of the differential expression level (high 
and low) on the OS probability (Figure 1(a)). 
The cutoff low–high was determined by k-means 
clustering (k = 2), as described in section 
‘Methods’, considering the differential expression 
(expression in tumor versus expression in normal) 
and intensity of the expression in the tumor only. 
High transcriptomic expression of these two 
genes in tumors, as compared with organ-
matched normal tissues, was significantly associ-
ated with a shorter OS (p < 0.0001 log-rank test), 
as shown in Figure 1(a) (median of 4.7 months 
for the high expression of MET and/or HGF ver-
sus median of 18 months for the low MET and 
HGF expression group). We also assessed the 
gene expression levels of the two genes using the 
same cutoff methodology based this time on 
intensity of expression in the tumor only. The 
association with OS was not significant (p = 0.11 
log-rank test), as shown in Figure 1(b). However, 
a similar trend was observed, with median OS of 
5.7 versus 15 months in the high MET and/or 
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HGF and the low MET and HGF expression 
groups, respectively.

The association between conventional clinical and 
biological characteristics of the patients with OS is 
illustrated by the Forest Plot for the Cox propor-
tional hazard model analysis (Figure 1(c)). This 
analysis included gender, site/type of the tumor 
(NSCLC, CRC, HN, and others), ECOG perfor-
mance score (0 or higher than 0), and the com-
bined expression profile of MET and HGF genes 

(each classified into high versus low, as determined 
for each gene by k-means clustering). Taking as 
reference the combined low differential expression 
of MET and HGF genes, the HR of the combined 
high expression of MET and/or HGF was 2.65 
with a 95% CI (1.54–4.5; p = 4.04 × 10−04). Site of 
the tumors was not significantly associated with 
OS. Taken together, high versus low expression of 
MET and HGF constitutes an independent prog-
nostic marker, agnostic of tumor type, and type of 
treatment.

Figure 1. Differential expression (tumor versus normal tissues) and expression in tumor alone to assess prognostic value of MET 
and HGF. (a) KM OS survival probability of WINTHER patients with high and low differential expression of both MET and HGF based 
on the tumor and normal tissues: low expression level of both MET and HGF (n = 27, in blue color) with median survival of 18 months; 
high expression level of MET and/or HGF (n = 73, black color) with median survival of 4.7 months. X-axis: number of patients who 
were not censored in each time point. The log-rank p value < 0.0001. (b) KM OS survival curve of WINTHER patients with high and 
low expression of both MET and HGF based on the tumor expression only; low expression level (n = 14, blue color) with median 
survival of 15 months; high expression level of MET and/or HGF (n = 86, black color) with median survival of 5.7 months. The log-rank 
p value = 0.11. (c) Forest plot of HR based on a multivariate Cox proportional hazards model based on the tumor and normal tissues. 
The dotted line displayed at a HR of 1 indicates the HRs of the reference group. Hazard values are with 95% CI. (d) KM of OS survival 
probability in patients with high and low MET and HGF expression levels explored only in the tumor tissue biopsy in independent 
RNA-seq dataset of pancreatic ductal adenocarcinoma tumors (n = 177). (e) Independent RNA-seq dataset of HN squamous 
carcinoma tumors (n = 500). (f) RFS in an independent chip-seq dataset of breast cancers (n = 507). Validation datasets d, e, f available 
from the KMplotter tool.21

CI, confidence interval; HN, head and neck; HR, hazard ratio; KM, Kaplan–Meier; OS, overall survival; RFS, relapse-free survival.
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Other validation cohorts were sought to confirm 
the prognostic significance21 of MET/HGF 
expression. Because none could offer both tumor 
and analogous normal tissue expression, we nev-
ertheless explored several cohorts with tumor 
expression only based on the observation that 
there was a similar trend in both types of explora-
tions (tumor versus normal or tumor alone): 
Figure 1(d) – pancreas carcinomas n = 177 (21 
stage 1; 146 stage 2; and 10 unknown); Figure 
1(e) – HN carcinomas n = 500 (25 stage 1; 69 
stage 2; 78 stage 3; 259 stage 4; and the rest 
unknown) and Figure 1(f) – breast cancers n = 507 
(6% stage 1, 50% stage 2, 29% stage 3, and 15% 
stage 4). In the breast cancer cohort, the nodal 
status was 71% positive nodes and 29% negative 
and ER-positive status concerned 59% patients. 
Prognostic significance was also confirmed in 
other types of solid tumors (NSCLC, stomach 
cancer, sarcomas – data not shown).

PFS predictor for c-MET inhibitors
The DDPP algorithm16 is a tool that relates the 
tumor expression (both absolute and relative to 
normal tissue) of key mechanism-based genes to 
clinical outcome of patients with cancer of any 

histology. The DDPP prototype demonstrated 
that starting with as few as three patients treated 
with a drug and for whom response to the treat-
ment (PFS) is available, it is feasible to estimate 
the PFS. Three patients were identified from the 
WINTHER study who were treated with MET 
inhibitors: ID005 NSCLC treated with 
SAR125844 with PFS 10.29 months; ID059 gas-
tric cancer treated with CL1-49076-S49076 with 
PFS 1.25 months and ID004 HN cancer treated 
with SAR 125844 with PFS of 0.23 months. The 
DDPP predictor selection is detailed in section 
‘Methods’. Figure 2(a) shows the most significant 
six gene sets (based on p value and R) selected as 
the correlator from among more than 50 genes 
selected based on literature review17,18,20,21: 
Y = 2.7852X − 5.97 where Y is the median of fold 
changes tumor versus normal multiplied by the 
intensity of expression in the tumor for each of 
the six genes: EZR, GRB2, SPSB3, CRKL, IL1B, 
and PSENEN, and X is PFS. The predictor per-
formance was R = 1 and p = 0.0037. The recipro-
cal equation X = (Y + 5.97)/2.7852 was then used 
to determine the pPFS for all other patients of 
WINTHER study, if they would have received a 
c-MET inhibitor. It is important to be clear that 
the WINTHER patients were not treated with 

Figure 2. Determining the eligible patient population that could benefit from treatment with c-MET inhibitors 
using the DDPP predictor of PFS. (a) Pearson correlation plot of the six-gene predictor with the PFS of three 
patients treated with c-MET inhibitors. Y-axis: median value of log2-based fold-changes tumor versus normal 
multiplied by log1.1 intensity of expression in the tumor for each of the six genes selected; X-axis: PFS in 
months. (b) Criteria of eligibility. Y-axis: log2 of the fold change tumor versus normal multiplied by the intensity 
of expression in tumor for MET (blue triangles) and HGF (red dots); X-axis: example of the subcohort of 17 
patients with metastatic NSCLC, ordered in increasing expression of MET. Non-logged fold change is shown: 
blue circles high MET, red circles high HGF, and dotted circles both high MET and high HGF.
DDPP, Digital Display Precision Predictor; PFS, progression-free survival.
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c-MET inhibitors (except for the three patients 
mentioned earlier) and our data represent an in 
silico modeling. The predictor did not retain 
expression of c-MET and HGF, suggesting that 
they have prognostic but not predictive value.22 
The drivers of the predictive signature are the 
expression of GRB2, EZR, SPSB3, and IL1B.

Figure 2(b) shows an example of the operationali-
zation of a strategy to select patient for MET 
inhibitor treatment based on differential expres-
sion between tumor versus normal of c-MET and 
its ligand HGF in a cohort of patients with meta-
static NSCLC that does not harbor DNA muta-
tion oncogenic drivers (such as EGFR, ALK, or 
ROS1 mutations), and estimate the predicted 
clinical benefit in this population. The main crite-
ria is a fold change in tumor versus normal higher 
than 1.5 of MET and/or HGF. Values of the fold 
change <1 of MET may suggest potential toxic 
effects of MET inhibitors as the action of drugs 
will be prevalent on normal tissues.

Applying this analysis to 100 patients with various 
solid tumors from the WINTHER cohort (one 
patient was excluded from the analysis since the 
expression of MET of this patient was not avail-
able), 61% met this criteria (MET and/or HGF 
fold change >1.5). The threshold for considering 
a clinical benefit was objective tumor response or 
stable disease >6 months.

Our in silico modeling data (Table 1) suggest that 
the predicted clinical benefit (disease control 
rate) of >6 months would be overall achieved in 
19 patients out of 100 (19%), representing a pre-
dicted disease control rate (defined as objective 
tumor response or stable disease of at least 
6-month duration) of 31% (19 patients out of 61 
patients with c-MET or HGF fold change tumor 
versus normal higher than 1.5): CRC 5%, HN 
5%, NSCLC 4%, and other types 5%.

Most of the patients had tumor harboring muta-
tions of TP53 or RAS. The in silico modeling sug-
gests the possibility of extending the use of 
c-MET inhibitors for the treatment of metastatic 
CRC and HN cancer in particular in those malig-
nancies harboring RAS mutation, the latter cur-
rently preventing the use of EGFR inhibitor 
cetuximab.26 The selection of patients based on 
c-MET fold change tumor versus normal higher 
than 1.5 may also present the benefit to avoid the 
area of toxicity of MET inhibitors.

Clinical study design of c-MET inhibitors in 
advanced NSCLC and CRC
The conservative hypothesis retained for design-
ing a trial was a clinical benefit of 25% from eligi-
ble patients.

Figure 3 shows the steps of the proposed design 
predicted efficacy of c-MET inhibitors. 
Considering the probability of good response 
p1 = 0.25 and a probability of poor response p0 at 
0.05%, the number of patients to be included in a 
prospective study exploring the efficacy of c-MET 
inhibitors in NSCLC and CRC was calculated 
using the Simon two-stage approach statistics.27,28 
In the example shown above, the optimal number 
of patients per cohort treated with c-MET inhibi-
tors would be 17 (with 9 patients in the first stage 
and an additional 8 patients in the second con-
firmatory stage – subject to responses in the first 
stage).

The selection of the four cohorts was made to fit 
with the current standard of care for patients with 
locally advanced or metastatic NSCLC or CRC. 
Inclusion will be allowed after at least one previ-
ous line of therapy. Patients would undergo the 
tumor tissue biopsy and the analogous normal tis-
sue biopsies (normal bronchial mucosa by bron-
choscopy for NSCLC and normal colonic mucosa 
by endoscopy for CRC). The main inclusion cri-
teria of the proposed trial would be cohort (1) 
NSCLC with previously treated genomic altera-
tions (HER2 amplification, RAS (G12C) muta-
tion, ROS1, RET fusion, ALK fusion, NTRK 
fusion, MET exon 14 skipping and EGFR muta-
tion); cohort (2) NSCLC without known action-
able genomic alterations; cohort (3) CRC with 
RAS mutation [including KRAS and NRAS 
exons 2 (codons 12 and 13), 3 (codons 59 and 
61), and 4 (codons 117 and 146)] or BRAF muta-
tion; and cohort (4) CRC with RAS and BRAF 
wild type.

Immune oncology targets in advanced  
NSCLC and CRC
Figure 4 presents the Forest plot of HRs of PFS 
based on a multivariate Cox proportional hazards 
model based on the expression of key immune 
regulatory genes in tumor and normal tissues in 
NSCLC and CRC. This analysis suggests that 
inhibitors of TIGIT, CTLA4, TIM3, LAG3, and 
PDL1 have the greatest potential to improve out-
come in NSCLC, consistent with data reported 
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by recent clinical trials. High expression of TIGIT 
in tumor compared with normal bronchial 
mucosa had the most significant association with 
poor outcome: HR, 6.4 × 1002 with 95% CI (5.3–
7.8 × 1004) and p value 0.008, followed by 
CTLA4, TIM3, and LAG3. In patients with met-
astatic CRC only, high expression of TLR4 had a 
significant association with shorter OS: HR, 4.73 
with 95% CI, 4.73 (1.47–15.27) and p value 
0.009. In contrast with NSCLC, exploration of 
TIM3 inhibitors would be of low priority in this 
population. Expression of IO targets was found to 
not depend on ECOG status and were independ-
ent prognostic variables.

Discussion
The current model of clinical drug development 
in oncology displays a major limitation due to a 
very high exclusion rate in patient enrollment in 
early phases, and a high attrition of drugs in phase 
III.1 The rationale for selecting a compound to 
enter in phase III is usually informed by (1) pre-
clinical evidence of bioactivity; (2) medical needs; 
(3) clinical trial results in one or a limited number 
of pathologies; and (4) limited drug–gene variant 
match (or none), most of the time based on DNA 
investigation, and in some cases based on immu-
nohistochemistry or fluorescent in situ hybridiza-
tion testing. This approach usually results in a 

Table 1. Characteristics of eligible patients with a predicted clinical benefit.

ID Age Sex Cancer site TP53 RAS Prior 
lines

ECOG Treated with 
inhibitor of:

Observed 
PFS 
(months)

MET 
(fch)

HGF 
(fch)

Predicted 
PFS-MET 
(months)

X267 39 M Melanoma wt wt 4 1 HER3 2.8 2 0.3 22

X282 55 M Head & Neck mut wt 3 0 CDK4/6 1.5 2.3 0.4 18.3

X212 55 M Lung mut wt 3 1 mTOR 1.1 2.6 1.1 16.9

X292 76 M Head & Neck mut mut 2 2 VEGFR1 0.7 10.4 0.8 15

X251 61 F Colon mut mut 3 1 CDK 1.9 7.8 0.8 13.1

X242 78 M Soft tissue mut wt 1 2 CDK4/6 1.2 1.6 2.7 11.7

X124 63 M Head & Neck mut wt 2 0 mTOR 7.8 3.6 7.1 11.4

X118 78 F Lung mut mut 3 2 MEK 3.1 3.2 0.6 10.7

X210 72 M Colon mut mut 2 1 MEK 1.6 2 0.7 10.7

X191 50 F Pleura mut wt 4 1 mTOR 1.1 1.6 0.4 10.6

X005 52 M Lung mut wt 4 1 MET 10.4 11.1 5.8 10.3

X220 68 M Lung wt wt 1 0 RET 5.4 2.9 0.4 10.3

X229 31 M Colon mut mut 3 1 MEK 2.0 1.8 1.7 9.4

X081 66 F Gastric wt wt 6 0 mTOR 4.2 1.4 2.7 9

X030 66 F Colon mut mut 7 0 MEK 3.6 3.3 3.5 8.9

X117 34 M Head & Neck mut wt 2 2 mTOR 1.9 3.1 2.8 8.7

X087 54 M Bladder wt wt 2 0 PARP 1.9 11.3 2 8.6

X288 66 F Colon mut mut 4 1 MET 6.8 7.1 1.3 8.6

X216 50 M Head & Neck mut wt 3 1 CTLA4 0.8 6.4 0.1 8.2

WINTHER patients with predicted clinical benefit if they had been treated with c-MET inhibitor (n = 19): ID, age, sex, tumor type, TP53 and RAS 
status, number of previous lines, ECOG status, the class of drugs given and observed, observed PFS, fold changes tumor versus normal for  
MET target and its ligand HGF and the pPFS. MET and HGF expressions have no predictive value. Toxicity area for MET fold change tumors versus 
normal <1.
ECOG, Eastern Cooperative Oncology Group; PFS, progression-free survival; pPFS, predicted PFS.
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high patient attrition rate because even when pos-
itive selection criteria are used, they are mostly 
based on DNA analysis, and mostly in lung can-
cers, and the frequency of the potential drug tar-
gets is usually low in the population (3–5%).8,17 
As a consequence, most of the patients screened 
cannot be enrolled and only a minority end up 
being treated, pointing the need of continuing 
explorations to optimize the use of drugs such as 
MET inhibitors.29

Our hypothesis was that transcriptomics might 
increase the fraction of patients that could benefit 
from c-MET inhibitors based on assessment of 
prognostic value of the high expression of MET 
and of its ligand HGF. The second step of our 
strategy consisted in building a predictor of the 
PFS for treatments with c-MET inhibitors. The 
predictor presented was built using the recently 
published DDPP algorithm16 and was based on 

vectorial summation of expression of six genes 
out of more than 50 relevant genes for MET 
pathway selected based on literature review.30–33 
The predictor did not retain the expression of 
c-MET and HGF, suggesting that they have 
prognostic but not predictive value29 for the effi-
cacy of treatments with c-MET inhibitors. The 
drivers of the predictor signature are the expres-
sion of GRB2, EZR, SPSB3, and IL1B which are 
key genes in the MET pathway. Indeed, recruit-
ment of GRB2 by MET leads to the activation of 
several signaling cascades including the RAS-
ERK, PI3 kinase-AKT, or PLCgamma-PKC.30 
SPSB3 is a component of E3 ubiquitin–protein 
ligase complex which mediates the ubiquitination 
and subsequent proteasomal degradation of tar-
get proteins.31 The involvement of the ubiquitin 
degradation pathway is particularly relevant as 
the mechanism of MET exon 14 skipping activa-
tion consists of generation of a functional but 

Figure 3. (a) Proposed design of a study to confirm predicted efficacy of c-MET inhibitors. (b) All patients 
enrolled in stage I will be followed for at least 6 months and assessed at months 2, 4, 6 following c-MET 
inhibitor treatment initiation. If at least one patient in a cohort is observed to have CR, PR, or SD of at least 
6 months duration according to RECIST v. 1.1, the cohort will be expanded in stage II to reach a total of 17 
patients. If three or more patients out of the 17 are observed to have CR, PR, or SD of at least 6-month 
duration, the cohort will be declared to have a signal of drug activity. This design enables detection of signs 
of efficacy, rejecting null hypothesis (ORR < 5%) and retain the alternative hypothesis (ORR > 25%) with 
80% power and a one-side type I error rate of 0.05. 36 patients are planned to be treated in the stage I and 
a maximum of 32 patients in the stage II, bringing a maximum number of patients treated to a total of 68, to 
assess which of the subcohorts are worth pursuing in phase III. 
CR, complete response; ORR, overall response rate; PR, partial response; SD, stable disease.
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more stable protein. EZR plays a key role in cell 
surface structure adhesion, migration, and organ-
ization, and it has been implicated in various 
human cancers.32 IL1B may link MET pathway 
to immune status of tumor enrironment.33 
Altogether, the predictor retained genes highly 
significant for the biological role in the MET 
pathway.

Based on our DDPP predictor, we calculated the 
pPFS and modeled in silico the potential clinical 
benefit for patients with various types of meta-
static solid tumors harboring an overexpression of 
MET or HGF with a fold change higher than 1.5 
in tumors as compared with histologically 
matched normal tissue biopsies. The predicted 
clinical benefit was found to be higher in patients 
whose tumors harbor TP53 wild type and RAS 
mutation. The in silico modeling of the predicted 
efficacy enabled design of a trial aiming to opti-
mize clinical development through matching 
tumor patients and drugs and identifying early 
signs of efficacy prior to expanding cohorts. The 
conservative hypothesis to be tested was a 

predicted disease control rate of 25% (defined as 
objective tumor response or stable disease of at 
least 6-month duration) of eligible patients. By 
testing DDPP predictors previously developed for 
other treatments, it was shown that patients had 
multiple other therapeutic options. Meaning, 
patients not eligible or lacking any predicted ben-
efit of a particular drug might benefit by other 
therapeutic options such as use of FGFR inhibi-
tors, anti PD-1, MEK, or Pan HER inhibitors.

The exploration of the prognostic value of impor-
tant IO targets (PDL1, CTLA4, TIGIT, TIM3, 
LAG3, TLR4, and ICOS) revealed very impor-
tant differences between patients with metastatic 
NSCLC and CRC, suggesting a rationale for 
selection of patients for different therapy 
approaches based on differential expression of 
these genes between normal tissues. The profile 
in NSCLC suggests that the use of TIGIT, 
CTLA4, TIM3, LAG3, and PDL1 inhibitors 
may have the greatest clinical benefit, consistent 
with data reported in recent trials. In contrast, the 
expression of these targets is not associated with 

Figure 4. Prognostic value of immune check point targets. Forest plot of HRs of PFS based on a multivariate Cox proportional 
hazards model based of relative gene expression in tumor and normal tissues. The dotted line displayed at a HR of 1 indicates the 
HRs of the reference group. Hazard values are with 95% CI. (a) Evaluation of prognostic value of IO targets in metastatic CRC. (b) 
Evaluation of prognostic value of IO targets in metastatic NSCLC.
CI, confidence interval; CRC, colorectal cancer; HR, hazard ratio; NSCLC, non-small-cell lung cancer; PFS, progression-free survival.
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adverse clinical outcome of patients with CRC. 
Instead, our data suggest a potential intervention 
with anti-TLR4 drugs in the management of met-
astatic CRC patients.

The key to improving the drug development pro-
cess will rely on the use of new biomarker strate-
gies to navigate patients to matched therapies in a 
personalized manner, clinical trial designs aiming 
to detect early signs of efficacy and diminishing 
patient attrition rate, optimization of the number 
of patients, and definition of cohorts. This arma-
mentarium in combination will likely reduce time 
and cost of trials while enhancing their efficacy.

To improve and accelerate the clinical develop-
ment of novel therapeutic drugs, we present a 
novel concept and tool for planning clinical trials 
with the objective to increase the efficacy of the 
exploratory phase of development (convention-
ally defined as phase I and phase II studies) aim-
ing to reduce the failure rate in the confirmatory 
phase of development (conventionally known as 
phase III).

Our proposal builds upon multiple foundational 
ongoing trials that demonstrate the feasibility of 
implementing precision oncology such as MD 
Anderson Phase I initiative IMPACT1 study,34,35 
ASCO’s TAPUR trial,36 the NCI Molecular 
Profiling based Assignment of Cancer 
Therapeutics (M-PACT) study (NCT01827384), 
the UT MD Anderson IMPACT-2 study 
(NCT02152254),37 the Lung Cancer Master 
Protocol (LungMap) study (NCT02154490),38 
the NCI Molecular Analysis for Therapy Choice 
(MATCH) Trial (NCT02465060), and oth-
ers.39–43 The main difference of our approach 
consists in use of transcriptomics for patient 
selection. This approach based on tumor and 
analogous normal tissue procurement was suc-
cessfully implemented in the WINTHER trial15 
after necessary training on the workflow, and was 
well accepted and tolerated by patients. In the 
trial, the WINTHER algorithm was proposing a 
list of drugs ranked by order of presumed efficacy. 
However, the vast majority of patients were not 
able to be treated with the best matched drug due 
primarily to the fact that the drug or clinical trial 
was not available in the country/hospital at the 
time of the trial. Here, the approach described 
displays important differences compared to the 
WINTHER trial. The four-step method pro-
posed to improve the clinical drug development 
and expand drug indications and therapeutic 

options for patients includes (1) evaluation of 
prognostic value of each target, (2) definition of 
criteria of patient selection for inclusion in a trial 
based on activation of the target (overexpression 
in tumor as compared to analogous normal tissue, 
(3) the use of Simon’s two-stage design, to detect 
signals of efficacy (with early futility rules if there 
is no therapeutic benefit), and (4) Use of the 
DDPP algorithm to predict duration of response 
to a drug.

While each individual step in our approach is 
based on previously published tools, this is the 
first time that all components have been inte-
grated to offer in silico modeling aiming at opti-
mizing patient selection for clinical trials in 
oncology. The major limitation of this work lies in 
its retrospective nature. Further prospective stud-
ies are needed to validate a robust predictive 
model using the DDPP algorithm. DDPP, until 
fully validated, would only be used to assess in 
silico the population of patients that would poten-
tially benefit from the therapeutic intervention.

Another limitation is that for building the DDPP 
predictor model outcome data on a minimum of 
three patients treated with the drug is needed. In 
the case of new drugs, this would imply that data 
from initial studies have to be used, that could 
include phase I studies.

In conclusion, we presented an integrated process 
based on transcriptomics in which interpatient 
variability is controlled by the use of dual tumor 
and organ-matched normal tissue biopsies. The 
approach consists in defining eligibility criteria, 
estimating in silico the potential clinical benefit for 
any drug alone or in combination and designing 
the optimal clinical trial to test the retained 
hypotheses. This process is expected to dramati-
cally decrease the attrition of patient enrollment 
and to simultaneously increase the speed and 
detection of early signs of efficacy. Altogether, 
our model aims to overcome the limits of current 
approaches.
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